

WORD SEQUENCE PREDICTION FOR AMHARIC LANGUAGE USING

DEEP LEARNING

A Thesis Presented

by

Yared Wolderufael Woldetsadik

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

in

Computer Science

February 2024

Addis Ababa, Ethiopia

i

ACCEPTANCE

Word Sequence Prediction for Amharic Language Using Deep Learning

By

Yared Wolderufael Woldetsadik

Accepted by the Faculty of Informatics, St. Mary’s University, in partial

fulfillment of the requirements for the degree of Master of Science in

Computer Science

Thesis Examination Committee:

Internal Examiner

Shimelis Tamiru (Ph.D)

External Examiner

Minale Ashagrie(Ph.D)

Dean, Faculty of Informatics

Alembante Mulu (Ph.D)

February 2024

ii

DECLARATION

I, the undersigned, declare that this thesis work entitled Word Sequence Prediction for Amharic

Language using BiLSTM is my original work, has not been presented for a degree in this or any other

universities, and all sources of materials used for the thesis work have been duly acknowledged.

Declared by

Yared Wolderufael Wolderufael

Full Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Alembante Mulu (Ph.D)

Full Name of Advisor

Signature

Addis Ababa

Ethiopia

January 2024

iii

Acknowledgments

First and foremost, I express my sincere gratitude to the almighty God for providing me with the

opportunity to undertake this endeavor and for guiding me throughout this journey. I want to

extend my deepest appreciation to my advisor, Dr. Alembante Mulu for his invaluable support,

mentorship, and unwavering commitment to my academic pursuits. His guidance in refining my

research and ensuring precise language usage has been instrumental in shaping the outcome of this

study.

I would also like to express my heartfelt thanks to my wife, Selamawit Tadesse, whose unwavering

support and constant inspiration have been a source of strength and motivation throughout this

undertaking. Her encouragement and belief in my abilities have been pivotal in sustaining me

during challenging times.

Lastly, I am grateful to my family and friends for their unwavering support and motivation. Their

continuous encouragement and belief in my capabilities have been instrumental in my progress. I

would like to acknowledge their significant contributions in providing a conducive environment

for me to focus on my work and pursue excellence.

iv

Table of Contents
Acknowledgments .. iii

List of Figures ... ix

List of Tables ... x

Abstract ... xi

CHAPTER ONE ... 1

1. INTRODUCTION .. 1

1.1.Background of the study ... 1

1.2.Motivation .. 2

1.3.Problem Statement .. 3

1.4.Research Question .. 4

1.5.Objective of the Study .. 4

1.5.1.General Objective .. 4

1.5.2.Specific Objective .. 5

1.6.Methodology ... 5

1.6.1.Research Design... 5

1.6.2.Literature Review... 6

1.6.3.Dataset Collection .. 6

1.6.4.Implementation Tools .. 7

1.6.5.Model Evaluation ... 7

1.7.Scope and Limitation .. 8

1.8.Significance of the Research .. 9

1.9.Organization of the Thesis .. 9

CHAPTER TWO .. 10

2. LITERATURE REVIEW AND RELATED WORK .. 10

2.1.Overview .. 10

2.2.Word Sequence Prediction ... 10

2.3.Word Sequences Prediction Approaches .. 11

2.3.1.Statistical Word Sequence Prediction .. 11

2.3.2.Knowledge-based Word Sequence Prediction ... 12

2.3.3.Heuristic Word Prediction ... 13

2.4.Language model ... 14

v

2.4.1.Statistic language modeling ... 14

2.4.1.1.Word Frequencies ... 14

2.4.1.2.Word Sequence Frequencies ... 14

2.4.1.3.Part-of-Speech Sequences ... 15

2.4.1.4.N-gram Language Models .. 15

2.4.2.Neural Language Models ... 15

2.5.Deep Learning .. 15

2.5.1.Recursive Neural Networks ... 16

2.5.2.Convolutional Neural Network .. 17

2.5.3.Recurrent Neural Network ... 18

2.5.4.Long Short-Term Memory ... 19

2.5.5.Bidirectional Long Short-Term Memory ... 22

2.6.Hyperparameter .. 23

2.6.1.Word Embedding ... 24

2.6.1.1.Static word embedding ... 24

2.6.1.2.Contextual word embedding ... 25

2.6.1.3.Character Representation for Linguistic Labeling 26

2.6.2.Dropout .. 27

2.6.3.Opoptimizer ... 27

2.6.4.Hidden layers and Number of nodes .. 27

2.6.5.Learning rate .. 28

2.6.6.Activation function .. 28

2.7.Hyperparameter optimization ... 28

2.8.Related Works .. 29

2.8.1.Word Prediction for Ethiopian Languages .. 29

2.8.2.Word Prediction for Foreign Languages.. 31

2.9.Summary ... 33

CHAPTER THREE .. 35

3. AMHARIC LANGUAGE .. 35

3.1.Amharic Language and its Writing System .. 35

3.2.Amharic Part of Speech .. 35

3.2.1.Nouns ... 35

vi

3.2.2.Pronoun .. 36

3.2.2.1.Demonstrative pronouns ... 37

3.2.2.2.Reflexive pronouns ... 37

3.2.2.3.Interrogative pronouns .. 37

3.2.2.4.Possessive pronouns.. 37

3.2.3.Adjectives .. 38

3.2.4.Verb.. 38

3.2.5.Adverb.. 38

3.2.6.Preposition ... 38

3.2.7.Conjunction .. 39

3.3.Amharic Morphology ... 39

3.3.1.Inflectional Morphology .. 40

3.3.2.Derivational Morphology... 40

3.4.Amharic Grammar .. 40

3.4.1.Subject and Verb Agreement ... 41

3.4.2.Object and Verb Agreement .. 42

3.5.Amharic punctuation .. 42

CHAPTER FOUR ... 44

4. SYSTEM DESIGN AND MODELING .. 44

4.1.Overview .. 44

4.2.System Architecture ... 44

4.3.Data collection .. 45

4.4.Data Preprocessing ... 46

4.4.1.Data cleaning ... 46

4.4.2.Short-form Expansion .. 46

4.4.3.Text Normalization .. 46

4.4.4.Tokenization .. 47

4.4.5.Determining the Sequence Length ... 47

4.4.6.Extracting frequent word sequences .. 47

4.4.7.Sequence padding .. 47

4.4.8.Input and output ... 48

4.4.9.Train-test split .. 48

vii

4.5.Word embedding .. 48

4.6.BILSTM Language Model ... 49

4.7.Hyperparameter .. 50

4.8.Activation function ... 50

4.9.Optimizer .. 51

4.10.Hyperparameter tuning ... 52

4.11.Model Training ... 52

4.12.Model Evaluation ... 52

CHAPTER FIVE .. 53

5.EXPERIMENT RESULT AND DISCUSSION .. 53

5.1.Overview .. 53

5.2.Tools and Experimentation Environment ... 53

5.3.Dataset .. 53

5.4.Experimental results ... 54

5.4.1.Training with Glove Embedding ... 55

5.4.2.Training with Fasttext Embeddings ... 55

5.4.3.Training with Word2vec embedding ... 56

5.4.4.Training with Keras Embedding .. 57

5.6 Discussion ... 59

CHAPTER SIX ... 60

6.CONCLUSION AND RECOMMENDATION ... 60

6.1 Conclusion .. 60

6.2. Future work.. 60

 References ... 62

Appendices ... 68

viii

List of Acronyms and abbreviations

AAC Augmentative and alternative communication

BERT Bidirectional Encoder Representations from Transformers

Bi-LSTM Bidirectional long short-term memory

CNN Convolutional neural network

DSRM Design Science Research Methodology

DL Deep Learning

ELMO Embedding from Language Models

LSTM Long short-term memory

NLP Natural language processing

POS Part of speech

RNN Recurrent neural network

RvNN Recursive neural networks

SGD Stochastic gradient descent

SMS Short Message Service

ix

List of Figures

Figure 2. 1 Recursive Neural Networks .. 17

Figure 2. 2 Convolutional Neural Networks .. 18

Figure 2. 3 RNN with the repeating module ... 19

Figure 2. 4. An LSTM's repeating module consists of four interacting layers. 20

Figure 2. 5 Bidirectional LSTM Arcitecher .. 23

Figure 4. 1 Proposed Architecture..…………………………...45

Figure 4. 2. BILSTM Flowdiagram...………………………………50

Figure 5. 1 Glove model loss and accuracy…………………………………………………….55

Figure 5. 2 Fasttext model loss and accuracy……………………………………………… …...56

Figure 5. 3 Word2vec model loss and accuracy…………………………………………… …...57

Figure 5. 4 Keras embedding loss and accuracy………………………………………………...58

x

List of Tables

Table 3. 1 Amharic Noun suffixes in gender, number, and case Markers 36

Table 3. 2 Amharic pronouns.. 36

Table 3. 4 A Structure of word order in an Amharic sentence. .. 41

Table 3. 5 Table Amharic punctuations adopted from .. 43

 Table 5. 1 Corpus summary……………………………………………………………………..54

Table 5. 2 Hyperparameter Parameters………………………………………………………….. 54

xi

Abstract

Textual communication is globally prevalent, with individuals relying on email and social

networking platforms for information exchange. Word prediction systems offer a time-saving

solution by anticipating the next word during data entry. However, typing complete text can be

time-consuming. Despite the development of language models for various languages, research on

prediction models for Amharic is limited. Existing studies primarily utilize statistical language

models for Amharic prediction, which struggle with data sparsity and fail to capture long-term

dependencies.

To address these limitations, this study proposes a deep learning approach for Amharic next-word

prediction. The dataset is preprocessed and collected with a vocabulary of 18,085 unique words.

Bi-directional Long Short-Term Memory (Bi-LSTM) models are employed, along with popular

pre-trained word embedding models (Word2vec, Fasttext, Glove, and Keras) for feature extraction.

Experiments encompass various hyperparameter values and optimization methods (Adam and

Nadam), significantly influencing model training and performance. Model accuracy is compared

to identify the most effective solution for Amharic word sequence prediction.

Evaluation is conducted using accuracy measurements to assess overall prediction system

correctness. Among the tested models, the Fasttext model combined with Bi-LSTM architecture

and Adam optimizer achieves the highest training accuracy (97.5%) and validation accuracy

(95.6%), surpassing other embedding methods. This research contributes to Amharic language

model development, demonstrating the capacity to capture long-term dependencies and accurately

predict the next word in Amharic text. The findings highlight the potential of Bi-LSTM-based

approaches in enhancing text prediction systems.

Keywords: Word prediction, Amharic language, Bi-LSTM, Word embedding, Fasttext, Long-term

dependencies

1

CHAPTER ONE

1. INTRODUCTION

1.1. Background of the study

Natural language processing (NLP) is a fascinating topic at the heart of computer science and

artificial intelligence. To provide computers the ability to examine and comprehend the complexity

of human language, from spoken words to written text. NLP works with massive datasets, applying

advanced algorithms to extract meaning, assess sentiment, and even synthesize natural language.

This opens the door to ground-breaking applications in machine translation, text summarization,

and the development of intelligent machines that understand our words [1].

Ethiopians speak Amharic, It is the mother tongue of the Amhara area as well as the official

working language of the federal government. In the Amhara regional state, it is also utilized as a

regional working language, and many people in the country use it as a second language. The

Amharic Fidel script (Ge'ez abugida) is written from left to right [2]. Amharic, is vital in Ethiopian

economic, commercial, and political contexts [3].

The growing usage of computers and mobile devices in Ethiopia has increased the number of

persons communicating in Amharic [2]. However, producing text in Amharic is difficult because

most physical keyboards are intended primarily for English. The Amharic script is made up of

thirty-four base characters that are organized into seven columns [4], the initial column contains

the basic characters, while the subsequent six columns display the derived vowel sounds from the

fundamental characters. Amharic consists of a total of 265 characters, which includes 27 labialized

characters typically representing two sounds. (e.g., ቐ/(ḳʰä) for ቅዋ/(Qʷä)) [3]. Due to the vast

number of characters, a physical computer keyboard cannot accommodate a key for every

character, leading to text that is challenging to decipher.

An effective method to tackle the challenge of composing Amharic text involves utilizing a word

prediction system. This system, which falls under the umbrella of natural language processing, is

designed to forecast the following word by analyzing preceding word sequences. Referred to as

word prediction or language modeling [4], this tool assists users in entering words by predicting

the next probable word and offering a selection of potential options [5].

2

Next word prediction can help people with physical limitations by reducing writing errors,

speeding up communication, and conserving energy during text composition [6]. The potential

benefits of word prediction systems for Amharic are multifaceted, extending beyond mere ease of

typing. Research suggests such systems can foster typing skills, enhance user concentration, boost

self-esteem, and promote autonomous writing [7]. However, the inherent grammatical complexity

of Amharic poses a significant challenge to the development of robust word prediction models for

this language.

N-gram models and other conventional word prediction techniques employ Markov chains to

gauge the probability of the next word by considering the preceding sequence of words.

Nevertheless, when implemented in Amharic, these approaches prove inadequate due to limited

data availability, extensive complexity, and the incapacity to capture meaningful connections

among words [8]. The intrinsic intricacies of the Amharic language, defined by a huge array of

affixes and morphological variants, present substantial hurdles for traditional prediction

approaches.

To tackle these challenges and make the Amharic language more accessible for daily activities, a

word prediction system that reduces the time and effort required to write in Amharic script has

been developed. The researcher is inspired to create a next-word prediction system that will save

time and effort when writing in Amharic script.

1.2. Motivation

As computers and mobile devices become ever-present in Ethiopia, the ability to type effectively

in Amharic, the dominant language, becomes crucial for daily communication. However, a

significant barrier stands in the way: a lack of dedicated tools and resources for Amharic text input.

While word prediction software exists for numerous languages, from English and Italian to Persian

and Swedish [6, 9, 10, 11], Amharic remains largely neglected. This gap is particularly evident in

the area of deep learning models, powerful tools for predicting word sequences with accuracy.

Without Amharic-specific models, navigating the digital world remains clumsy and inefficient for

millions of Ethiopians. This lack of research and development impedes not only individual

productivity but also hinders wider participation in the digital sphere, potentially disadvantaging

Amharic speakers in communication, education, and economic opportunities. Addressing this gap

3

through dedicated research and development efforts is essential to ensuring equitable access and

inclusion in Ethiopia's digital future.

To address this issue, we are motivated to develop an Amharic Word Sequence Prediction

system using a deep learning approach of the Bidirectional Long Short-Term Memory (BLSTM)

model that can help speed up text entry and eliminate spelling errors. Our study focuses on word

sequence prediction, which can be particularly beneficial for people with limited vocabulary or

those who struggle with spelling. The morphological characteristics of Amharic, which include

complex inflectional and derivational verb morphology, make it challenging to develop accurate

and efficient word prediction systems. However, by using deep learning models like BLSTM, we

can overcome these challenges and create a language-specific tool that can benefit a large number

of people who communicate mainly in Amharic.

1.3. Problem Statement

Modern digital interactions rely significantly on text entry, which is frequently accomplished using

keyboards intended primarily for English characters. This is particularly difficult for Amharic

speakers, whose language employs a script unique from the common Latin alphabet. While there

are alternate input techniques available, such as Amharic-specific software packages like Power

Geez, GeezIME, and Abnet, they frequently need laborious multi-key combinations for individual

characters, slowing down the writing process [12].

In response to this challenge, word prediction models offer a promising solution. By analyzing the

sequence of already-typed words, these models can predict the most likely next word, potentially

reducing both typing time and spelling errors. This technology holds the potential to significantly

improve the efficiency and ease of Amharic text entry, benefiting communication, education, and

overall digital participation for Ethiopia's Amharic-speaking population.

While word prediction software has proven to enhance typing speed and efficiency, especially for

slower typists or those with limited keyboard space, its use in Amharic is mainly unexplored. This

is owing, in part, to the language's complex morphological structure, which presents particular

hurdles for word sequence prediction. While N-gram models were used in the initial investigations,

their disadvantages, such as data sparsity and restricted management of long-term dependencies,

necessitated the exploration of alternate methodologies.

4

To the best of our knowledge, there are only a few research attempts on word sequence prediction

in the Amharic language, especially using deep learning models. Our study aims to fill this gap by

developing an accurate and efficient Amharic word sequence prediction system that can

improve text entry performance and promote digital inclusion in Ethiopia. With the rapid growth

of electronic devices and computers in the country, language-specific tools like Amharic

word sequence prediction can play a crucial role in improving digital communication and

accessibility for all users, including those with limited vocabulary, poor spelling, or disabilities.

By addressing the challenges posed by the complex morphology of Amharic, our study can

contribute to the development of language-specific tools for under-resourced languages and

promote the use of electronic devices and computers in Ethiopia

This research aims to address these limitations by developing an Amharic word sequence

prediction model utilizing a Bidirectional Long Short-Term Memory (BLSTM) architecture. As a

powerful deep learning technique specifically designed for sequential data, BLSTM offers the

potential to overcome the aforementioned challenges and significantly improve Amharic text

entry.

1.4. Research Question

The following research questions are addressed in this study:

1. What are the optimal hyperparameter values that can enhance performance in the

Word Sequence Prediction Model?

2. Which pre-trained word embedding model produced the best results?

3. How effective are deep learning algorithms of Bi-LSTM for Amharic Word

Sequence Prediction?

4. What are the most significant challenges for Amharic language models, according

to research?

1.5. Objective of the Study

1.5.1. General Objective

The general objective of the proposed study is to develop a Word sequence Prediction Model for

Amharic using Deep Learning.

5

1.5.2. Specific Objective

To achieve the above-mentioned general objective the following specific objectives are

performed: -

 To review the existing literature on Amharic Word Sequence Prediction, providing an

overview of current theories and methodologies while identifying research gaps for

further investigation.

 To identify the challenge of the Amharic language in language model

 To collect and prepare representative dataset for Amharic word sequence prediction.

 To propose the development of a word sequence prediction model for the Amharic

language by leveraging pre-trained word embedding models, optimizing hyperparameter

values, and employing the Bi-LSTM deep learning algorithm.

 To evaluate performance of the word sequence prediction model

1.6. Methodology

This part explains the entire study procedure, which will take place sequentially with the goal of

successfully and efficiently answering the presented research problem, complemented by suitable

performance evaluations. As a result, each study process is detailed separately, as follows:

1.6.1. Research Design

The design science research approach methodology was applied in this research, It is a

comprehensive scientific discipline that focuses on the creation and implementation of practical

solutions in various fields including software engineering, computer science, information science,

and information technology [13]. It encompasses a range of research techniques that employ

design and development to gain insights into fundamental processes. The DSRM methodology

consists of six distinct stages [13].

 Define the problem and motivate: It outlines the particular research problem and provides

reasoning for the importance of a resolution. Justification of the solution's value serves two

purposes: it encourages both the researcher and the research audience to seek the solution,

and it enables the audience to recognize the researcher's grasp of the issue.

 Define the objectives for a solution: It is possible to deduce from the problem definition

and understanding of what is achievable and practical. The objectives should be logically

deduced from the problem specification.

6

 Design and creation of the artifact: a DSR artifact can encompass any designed object that

incorporates a research contribution within its design. This process involves defining the

desired functionality and structure of the artifact before proceeding to its creation.

 Demonstration: It is an exercise that showcases the application of the artifact to resolve

one or multiple instances of the problem. This may encompass its utilization in

experimentation, simulation, case study, proof, or any other suitable undertaking.

 Evaluation: it assesses the effectiveness of the artifact in facilitating a solution to the

problem. This process includes analyzing whether the intended goals of the solution align

with the practical outcomes observed during the use of the artifact within its specific

context.

 Communication: all relevant stakeholders are informed about every aspect of the problem

and the designed artifact. The communication methods used are tailored to the research

goals and the audience, which may include practicing professionals.

1.6.2. Literature Review

Conducting a literature review is essential to conduct a comprehensive evaluation and analysis of

prior research relevant to the current study. The focus is on the thesis, specifically the field of

study, such as the language and datasets utilized; the methodology employed; the techniques for

data collection and preparation; the tools utilized for prototype development and analysis; and the

evaluation of the performance of these approaches and tools to ascertain their potential

applicability to the newly proposed study.

1.6.3. Dataset Collection

This research aims to predict the next word in an Amharic sentence, considering the surrounding

words and context. To achieve this, we gathered data from Amharic news articles, a common

source of written language. A crucial challenge for any learning system is determining how much

data it needs to perform well. Ideally, we would use a vast collection of text (corpus), but we also

need to consider how to best choose which data to use for training. Therefore, we opted for a

simple method where each sentence had an equal chance of being selected. This resulted in a

dataset containing 3496 sentences from various news sources. From the collected sentence, we

collect a unique word of 18,085 this dataset is divided into training, validation, and testing sets,

allowing us to train our system and evaluate its performance in predicting the next word.

7

1.6.4. Implementation Tools

The study's experiments were conducted utilizing a prototype that was developed with the use of

Python and open-source libraries.

Python: is a robust programming language renowned for its capability to manage various

modules and conduct analysis on mathematical operations.

Keras is a Python API that interfaces with platforms such as TensorFlow, offering robust backing

for a range of neural network components and enabling smooth incorporation with Python.

TensorFlow is an open-source numerical computation platform, is utilized to provide efficient

computational abilities on both CPUs and GPUs, thus improving the overall performance of the

model.

NumPy is an essential Python library that plays a crucial role in scientific computing. It offers

comprehensive assistance for performing mathematical operations on arrays and matrices with

multiple dimensions. These arrays and matrices are widely utilized in various data preprocessing

and manipulation tasks.

Pandas is a versatile library for data manipulation and analysis. It offers data structures and

functions to efficiently handle structured data, such as data frames, which are commonly used in

preprocessing and organizing input data for machine learning models.

Scikit-learn is a comprehensive library for machine learning in Python. It provides a wide range

of tools and algorithms for tasks such as data preprocessing, feature extraction, and model

evaluation. In the context of word sequence prediction, sci-kit-learn can be used for data

preprocessing and splitting datasets into training and testing sets.

Gensim is a Python library specifically designed for topic modeling and document similarity

analysis. It also includes implementations of popular word embedding algorithms such as

Word2Vec, which can be utilized for generating word embeddings in the BiLSTM model.

1.6.5. Model Evaluation

Accuracy: measures the percentage of words the model correctly predicts in a given sequence.

Essentially, it tells you how often the model's guess for the next word matches the actual word in

the text. To calculate accuracy, we compare the sequence of words predicted by the model with

the actual sequence in the reference text. For each word, we mark a match if the predictions and

reference words are identical. Finally, we divide the total number of matches by the total number

of words and multiply by 100% to get the accuracy percentage. The formula for Accuracy is: [14]

8

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Total number of maches

Total number of words
∗ 100%

Perplexity: measures the average difficulty of predicting the next word in a text, with lower

perplexity indicating better performance. It is a key metric used to evaluate the performance of

language models, like word prediction. Cross-entropy measures the model's uncertainty about the

next word. Lower cross-entropy signifies higher confidence in the prediction, leading to a lower

perplexity. The formula for perplexity (PP) is: [15]

PP = 2(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑜𝑠𝑠 −𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑)

Keystroke saving: a widely adopted metric for evaluating word prediction systems, quantifies

the reduction in typing effort achieved by utilizing suggested words. It is defined as the difference

in the number of keystrokes required to type a text without prediction (KT) and the effective

number of keystrokes used with prediction (KE). [7, 8]

𝐾𝑆𝑆 =
𝐾𝑇 − 𝐾𝑆

𝐾𝑇
∗ 100%

The higher the keystroke saving (KSS), the better the word prediction system performs. It's like

a shortcut – the more keystrokes you save with suggestions, the smoother and faster your typing

experience. Conversely, a low KSS indicates the system isn't offering much savings, suggesting

its performance needs improvement.

1.7. Scope and Limitation

This research aims to develop a deep learning-based word sequence prediction for Amharic. The

model utilizes frequent 7-gram sequences for prediction. Linguistic features like syntax, semantics,

and pragmatics are not incorporated due to resource limitations and time constraints. However,

word embedding techniques are employed to represent word features using distributed vectors.

User interface design is out of the scope of this study due to time limitations.

9

1.8. Significance of the Research

This research holds significant value for the field of Amharic Natural Language Processing. By

establishing a dedicated Amharic sentence dataset, identifying the most effective algorithm for

word sequence prediction, and optimizing hyperparameters for Bi-LSTM models, this work lays

the groundwork for future research and development in this domain. It empowers future

researchers and developers with crucial resources and insights to create more accurate and efficient

Amharic word prediction systems.

1.9. Organization of the Thesis

The remaining sections of this thesis are structured as follows. Chapter 2 conducts a concise

literature review, examining key concepts in word prediction, available methods, and relevant

research by other scholars. This includes their approaches and findings on word sequence

prediction. Chapter 3 delves into the intricacies of the Amharic language, exploring its structure

and grammatical norms. Chapter 4 offers a comprehensive explanation of the proposed word

sequence prediction model, detailing its architecture, underlying strategy, and relevant

considerations. Chapter 5 presents the experimental setup, conducted evaluations, and insightful

discussions. Finally, Chapter 6 provides a conclusive summary of the research and outlines

potential avenues for future work.

10

CHAPTER TWO

2. LITERATURE REVIEW AND RELATED WORK

2.1. Overview

This chapter lays the groundwork for understanding word sequence prediction and its various

approaches. We explore fundamental concepts and methods, including statistical, knowledge-

based, and heuristic techniques, in order to present a thorough analysis of the subject.. As this

study focuses on building a word sequence prediction model for Amharic using deep learning, we

delve deeper into key concepts like language models, deep learning principles, hyperparameter

optimization, and relevant research on Amharic and foreign language prediction models. Each of

these topics is covered in dedicated sections throughout the chapter

2.2. Word Sequence Prediction

In today's digital age, the sheer volume of text and documents generated electronically has

propelled computers and technology to become crucial tools in our daily lives. We rely on

numerous gadgets to enter textual information and transmit it across the digital world, whether

we're writing emails, preparing reports, or engaging in online discussion. Over the last decade,

there has been substantial progress in the ability to process Amharic documents using computers,

mobile phones, and other electronic devices [2]. This has resulted in an exponential increase in

electronically stored papers, information, and databases. Text input into computers can be

accomplished using keyboards or other novel approaches.

The development of text prediction systems can be traced back to the post-World War II era when

an increase in physical disabilities needed the development of assistive technologies. Word

prediction, a pioneering form of assistive technology, has emerged as a critical tool for bridging

the gap between those with physical limitations and the digital world. Researchers worked

tirelessly to create systems that not only accommodated users' limitations but also enhanced their

talents. Prediction systems have been firmly established as essential components of the assistive

technology environment since the early 1980s [16].

Word prediction in natural language processing addresses the problem of forecasting the next word

in a given text sequence [6]. This entails examining the prior words and utilizing statistical or

machine-learning approaches to determine the most likely word to follow. The terms "text

11

prediction," "word prediction," and "word completion" are frequently used interchangeably, yet

there are subtle differences between them. term prediction attempts to estimate the user's intended

term based on the prior context, whereas word completion attempts to predict the word the user is

now typing based on the partially inserted characters or words.

Word prediction models are intended to improve text entry efficiency across a variety of

applications by reducing the number of keystrokes necessary. They are especially useful in

language learning as they suggest appropriate words for non-native speakers, minimize spelling

errors for users with limited language proficiency, and reduce the overall effort involved in text

composition, especially for individuals with physical disabilities. These approaches efficiently

speed up the writing process and enable users to communicate more effectively.

2.3. Word Sequences Prediction Approaches

There are three main ways to predict the next word in a sequence: statistically, with linguistic rules,

and by adapting to user input and context [2]. Statistical methods rely on how often words appear

together in a large dataset. The more often two words show up next to each other, the more likely

the second word is to follow the first. Linguistic methods use the grammar and structure of the

language to predict the next word. These methods rely on dictionaries and rules about how words

can be combined. Adaptive methods learn and improve as they're used. They start with basic

statistical or linguistic models, but then adjust their predictions based on real-time feedback from

users and the specific context of what's being written [2].

2.3.1. Statistical Word Sequence Prediction

Statistical word prediction relies on the likelihood of words within a specific text to anticipate

letters, words, and phrases. This method is grounded on the Markov assumption, which posits that

the preceding n-1 words dictate the subsequent word. However, these models can produce

incorrect or nonsensical predictions, and it is not possible to preserve all word forms in languages

with complex morphology. Prediction using frequencies, which proposes the most frequent words

based on a dictionary, and prediction using word probability tables, which contain conditional

probabilities of words that follow each other, are two common ways. These models improve

prediction accuracy but demand more data storage and computational complexity; they perform

best for languages with no inflection [2].

12

2.3.2. Knowledge-based Word Sequence Prediction

This approach uses linguistic knowledge or rules to analyze the order of word types (syntax),

meaning (semantics), and context (pragmatics) in an input sentence.

Syntactic prediction

To achieve grammatical accuracy, syntactic prediction in word suggestion takes into account part-

of-speech tags and phrase structures. The algorithm can make reasonable predictions about the

type of words that will follow by following grammar rules. Statistical syntax assigns probabilities

to candidate words based on their syntactic categories and POS tags, while rule-based grammar

parses the present phrase and determines word categories. These approaches improve the accuracy

of suggested words by using syntactic information.

There are two methods for predicting syntax: probability tables and grammars [12] . The

probability table technique combines syntactic information by evaluating the probability of each

word and the likelihood of syntactic categories appearing consecutively. Based on the current

position in the phrase, the algorithm suggests words with the most probable syntactic categories,

resulting in more precise predictions compared to frequency-based techniques. The two-

dimensional table containing category probabilities is smaller than the frequency-based approach,

with fewer probabilities close to zero. The table and lexical frequencies can be adjusted to allow

for system adaptation. On the other hand, the grammar-based approach analyzes sentences using

either top-down or bottom-up techniques and utilizes natural language processing to identify

categories with the highest likelihood of occurrence. Each language has its own set of syntactic

rules, and the right-to-left structure assists in category decomposition. Morphological agreement

constraints can be established between categories to ensure that suggested words possess the

appropriate morphological characteristics. These systems have a higher computational complexity

as they consider the entire beginning of a sentence. In these systems, word probabilities and

syntactic rule weights can be modified for adaptation.

Semantic prediction

Semantic prediction is assessing words in real-time based on their semantic meaning, with each

word connected with one or more semantic categories [2, 12]. The method and complexity of

13

semantic prediction are comparable to syntactic approaches based on grammar, although semantic

prediction is more sophisticated and less often utilized.

The utilization of the lexical source and lexical chain is a common practice in semantic word

prediction. The lexical source, exemplified by WordNet in English, assesses the probability of

words being interconnected within a given context to ensure that the predicted words are

contextually appropriate. On the other hand, the lexical chain gives priority to words that are

semantically linked in the context by eliminating unrelated words from the list of predictions.

While these predictions may be syntactically or semantically valid, they can still be flawed in terms

of discourse due to the significant impact of pragmatics on the predictor's proficiency. Enhancing

prediction accuracy is achieved by incorporating pragmatic knowledge during the training of the

system.

Pragmatics prediction

Pragmatics prediction pertains to the capacity of a model or system to foresee the subsequent word

in a sequence, surpassing mere grammatical accuracy and semantic coherence. It focuses on

predicting the word that is most fitting and appropriate within the specific context of the discourse

[2, 14].

2.3.3. Heuristic Word Prediction

Heuristic word prediction aims to personalize predictions by dynamically adapting to individual

user preferences and behavior. This adaptation can be achieved through two primary approaches:

short-term and long-term learning.

Short-Term Learning:

This method focuses on adapting predictions based on the present context of the user's input.

Several strategies can be used in this case, including Recency promotion is the practice of

preferring recently used words for suggestion. Topic guidance: customizing suggestions

depending on the current text's inferred topic. Trigger-target pairs: linking often co-occurring

words to provide context-aware suggestions; and finally, N-gram cache: using frequently

encountered n-grams (word sequences) to predict the next word in a similar context [12]

.

14

Long-Term Learning

This method remembers the user's writing habits by looking at all the text they've written before,

not just the current sentence. The more the user types, the better the system learns their preferences

and adjusts its suggestions accordingly. This gradual adaptation is called heuristic learning [12]. It

helps in Learning new words, Suggesting different forms of words based on the context and the

user's writing style, and recommending compound words the user often uses together.

2.4. Language model

In the field of natural language processing, language models play a crucial role in facilitating

machine comprehension of textual information. These models are primarily employed for

probabilistic analysis, tasked with calculating the likelihood of a specific sequence of tokens

occurring within a corpus – a curated collection of text documents [17]. Word prediction systems

use two main approaches: statistical models and neural models. Statistical models rely on numbers - they

analyze how often words appear together to guess the next likely word. Think of it like counting marbles

in a bag - the most frequent colors are the most likely to be picked next. Neural models, inspired by the

brain, use interconnected "neurons" to learn complex patterns. Imagine a maze these neurons navigate,

getting better at predicting the next turn with each attempt.

2.4.1. Statistic language modeling

Statistical language models (SLMs) are strong natural language processing (NLP) tools that

anticipate the next word in a sequence based on previous words. some of the statistical language

model types are word frequency, word sequence frequency, Pos-tagging, and N-gram models [18].

2.4.1.1. Word Frequencies

Early systems simply looked at how often individual words appeared. This led to repetitive

suggestions, ignoring the surrounding context [19].

2.4.1.2. Word Sequence Frequencies

Taking a step further, these models consider the previous word(s) to influence the next prediction.

So, "the quick" is more likely to be followed by "brown" than "apple." This captures some grammar

and meaning but still has limitations [18, 20].

15

2.4.1.3. Part-of-Speech Sequences

Instead of looking at individual words, this method tracks the sequence of grammatical tags like

"noun" or "verb." This allows for a broader context but sacrifices some specific meaning [18, 21].

2.4.1.4. N-gram Language Models

These are the stars of statistical prediction. The likelihood of a word sequence is calculated by

analyzing the preceding words. Think of it like connecting sentences of marbles - certain

combinations appear more often together. N-grams are powerful tools in speech recognition and

handwriting analysis but struggle with capturing larger contexts [22, 23].

2.4.2. Neural Language Models

Neural Language Models (NLMs) are a powerful class of machine learning models that utilize

artificial neural networks to process and generate human language. NLMs best perform tasks like

machine translation, text summarization, dialogue systems, and even creative text generation.

Neural language models (NLMs) have indeed advanced N-gram language models in many aspects.

N-grams only consider a fixed-size window of previous words, leading to issues with long-range

dependencies and unseen n-grams. In addition, N-grams struggle to capture complex semantic and

syntactic structures in language. NLMs have high accuracy and performance on various NLP tasks

and improve their performance by learning from new data, making them adaptable to changing

language patterns and trends. However, its benefits NLMs have challenges in training, and running

large NLMs requires significant computational resources. [24, 25]

2.5. Deep Learning

Deep learning is a revolutionary machine learning technique that excels where traditional methods

falter: on complex, unstructured data. [26] Unlike traditional methods, which require extensive

feature engineering, deep learning models can automatically learn features from data at multiple

levels, progressively building a refined understanding. This ability, coupled with the explosion of

available data and the rise of powerful computing hardware, has propelled deep learning into the

forefront of machine learning, empowering it to tackle ever-more challenging tasks. [26, 27]

Deep learning's true power lies in its ability to learn from data in a way traditional methods simply

cannot. By leveraging the power of multi-layered neural networks, deep learning models can

extract intricate features from data at multiple levels, progressing from basic patterns to complex

concepts [26, 27] This feat, once unimaginable, is now a reality thanks to the vast amount of data

16

available and the development of powerful hardware capable of handling the immense

computational demands. As a result, deep learning has become a transformative force in machine

learning, unlocking breakthroughs in areas ranging from computer vision to natural language

processing, cybersecurity, bioinformatics, robotics and control, and medical information

processing [27].

2.5.1. Recursive Neural Networks

Recursive Neural Networks are a powerful type of deep neural network designed to excel in two

key areas: hierarchical forecasting and compositional vector classification. Unlike traditional

neural networks, RvNNs thrive on data with inherent structure, such as graphs or trees. In RVNNS

the network wouldn't simply analyze each word individually; it would understand the hierarchical

relationships between words, phrases, and clauses. The understanding of the structure gives the

power to forecast in a hierarchical fashion which means predicting future behavior based on the

underlying structure of the data, not just individual elements. Moreover, structure understanding

helps in classifying outputs using compositional vectors that represent the meaning of a complex

object like a sentence as a combination of the meanings of its smaller parts like words, and phrases

[27] .

17

Fifigure 2. 1 Recursive Neural Networks

2.5.2. Convolutional Neural Network

The Convolutional Neural Network (CNN) is a popular and powerful algorithm in the area of

deep learning [27]. What sets it apart from older methods is its ability to automatically discover

important features in data, without needing humans to hand-pick them. This makes it incredibly

versatile and effective for various tasks like image recognition, audio analysis, and even face

recognition. Just like traditional neural networks, CNNs draw inspiration from the way neurons

work in the brain [27]. Imagine you're looking at a picture. A CNN would assign weights and

values to different objects in the image, helping it distinguish one from another. This unique ability

allows it to capture the relationships between pixels and understand the overall scene, making it

less dependent on pre-processing compared to other algorithms. Figure 2 illustrates the basic

structure of a CNN.

18

Figure 2. 2 Convolutional Neural Networks

2.5.3. Recurrent Neural Network

Recurrent Neural Network (RNN) is a form of artificial neural network that is designed to analyze

sequential data such as time series or natural language. [28] Unlike feedforward neural networks,

which linearly process data from input to output, RNNs have recurrent connections that allow them

to maintain an internal state or memory. RNNs possess the unique advantage of recurrent

connections. These connections form internal feedback loops, enabling the network to maintain a

dynamic internal state, effectively serving as its memory. This inherent memory allows RNNs to

capture temporal dependencies and patterns within sequential data, making them particularly adept

at tasks involving temporal interactions [27].

The core operation of an RNN lies in its step-by-step processing of input sequences. Each step

corresponds to a specific position or time frame within the sequence. At each step, the RNN

receives an input vector and integrates it with the internal state inherited from the preceding step.

This fusion generates an output while simultaneously updating the network's internal state. This

iterative process repeats for each step in the sequence, permitting the RNN to progressively capture

and propagate information across time [27, 28].

Assume x = (x1, x2,...., xT) represents a sequence of length T, and ht represents RNN memory at

time step t, and an RNN model updates its memory information using the following formula:

ht = σ(Wxxt + Whht−1 + bt) (1)

19

where σ is the activation function, often a non-linear function like sigmoid or tanh. It introduces

non-linearity to allow the RNN to learn complex relationships. Wxxt is the weight matrix for the

input at time step t. It determines how much each input feature contributes to the hidden state.Whh1

is the weight matrix for the previous hidden state ht-1 to control how much information from the

past is carried forward. Bt is the bias vector at time step t. It helps adjust the overall output of the

activation function.

Figure 2. 3 RNN with the repeating module

2.5.4. Long Short-Term Memory

Long Short-Term Memory is a specialized RNN architecture that is adept at capturing long-term

dependencies in sequential data, overcoming the issues of vanishing or exploding gradients that

traditional RNNs face when processing lengthy sequences. LSTMs employ a clever internal

structure that allows them to effectively learn over extended periods [29]. The core of an LSTM

lies in four cell structure, which includes the forget gate, Input gate, cell state, and output gate. The

forget gate will decide which information from the previous hidden state (ht-1) to retain by

combining it with a new weight vector. The input gate chooses which parts of the current input

(xt) to incorporate through linking with the new weight vector. The cell state stores the actual long-

term memory and is updated using the activation function and based on the forget and input gates.

The current hidden state (ht) is determined by applying another activation function to the updated

cell state and a weight vector.

20

In LSTM, gates operate like tiny decision mechanisms, regulating the flow of information through

the LSTM cell. They ensure that only relevant data persists in the long-term memory while

irrelevant or outdated information is discarded. LSTM can analyze not only single data points but

also complete data sequences like as audio or video. LSTM, for example, is useful for tasks like

networked handwriting recognition, speech recognition Machine translation, and Text generation.

[30]

Figure 2. 4. An LSTM's repeating module consists of four interacting layers.

Figure 2. 5 shows the flow of information inside a LSTM network. Imagine each yellow box as a

learning station

Figure 2.4 illustrates the information flow within an LSTM network, visualize each yellow box as

a station for learning, processing information on its way through the network. The lines connect

these stations, carrying information like arrows on a map. Pink circles represent simple operations

like adding information together. One special feature of LSTMs is the cell state. Think of it as a

long conveyor belt running through the entire network. Information can travel along this belt

easily, almost untouched. This helps us remember important things for a long time, even as new

information comes in.

Forget Gate:- It receives two inputs: the previous hidden state (ht-1), which is the accumulated

information from previous elements in the sequence, and the weight vector (Wf), which assigns

21

importance to different parts of the hidden state. It then combines these inputs with an activation

function of the sigmoid and the bias vector (bf) to adjust the "forgetting factor (ft) between 0 and

1. The forgetting factor is derived as follows:

ft = σ(Wfh [ht−1], Wfx [xt], bf) (2)

Input Gate:-It receives three inputs, current input (xt), previous hidden state (ht-1), and weight

Vectors(Wi and Wh). The current input(xt) has new information from the current element in the

sequence. The previous hidden state(ht-1) has information about the past data. weight vector has

assigned a weight to different parts of the input and hidden stats. The input gate harmonizes these

inputs through a sigmoid activation function, yielding a "gate value" (it) bounded between 0 and

1. This value acts as a selective filter, determining the extent to which the current input permeates

the cell state.

it = σ(Wih [ht−1], Wix [xt], bi) (3)

Then the gate constructs a candidate cell state (ct) by applying a tanh function to the filtered input.

This candidate holds potential additions to the long-term memory, awaiting final approval.

 ct = tanh(Wch [ht−1], Wcx [xt], bc) (4)

The combination of these two layers provides an update for the LSTM memory in which the

current value is forgotten using the forget gate layer through multiplication of the old value (i.e.,

ct−1) followed by adding the new candidate value (it ∗ ct). The following equation represents its

mathematical equation:

ct = ft ∗ ct−1 + it ∗ ct (5)

when ft value must be a value between 0 and 1 where ft = 0 it indicates that completely get rid of

the value; whereas, ft =1 implies completely reserving the value.

Output Gate:- has two inputs, which are updated cell state (ct) and weight vector (wo). The

update cell state vector encapsulates the network's current long-term memory, containing

knowledge distilled from past inputs and refined through the forget and input gates' meticulous

filtering processes. Weight vector (wo) guides the gate's focus towards specific elements within

the cell state, highlighting those deemed most pertinent for the immediate task at hand.

22

ot = σ(Woh [ht−1], Wox [xt], bo) (6)

The output gate methodically combines these inputs using a sigmoid activation function, providing

a "gate value" (ot) confined within the range of 0 to 1. This value acts as a selective filter, deciding

how much information from the cell state permeates the hidden state.

ht = ot ∗ tanh(ct) (7)

 The cell state is transformed using the tanh activation function, resulting in a vector with a range

of -1 to 1. This transformed state represents raw knowledge ready for possible transmission. The

output gate then acts by multiplying the changed cell state by its gate value, thus filtering out

irrelevant or excessive information. The generated vector becomes the current hidden state (ht),

ready to influence further network activities.

2.5.5. Bidirectional Long Short-Term Memory

Building upon the foundation of LSTMs, bidirectional LSTMs leverage two LSTMs for processing

input data [31]. The first LSTM analyzes the original sequence in a forward direction, followed by

a second LSTM analyzing the reversed sequence (backward direction) [31]. This dual-pass

architecture strengthens the model's ability to capture long-term dependencies within the data,

leading to improved accuracy compared to standard LSTM models.

Bidirectional Long Short-Term Memory (Bi-LSTM) networks offer several advantages over

traditional LSTMs for sequence prediction tasks. [32] Unlike its predecessor, which only processes

data in one direction, Bi-LSTM performs two iterations: one from beginning to end and another

from end to beginning. [32] This bidirectional traversal allows the network to consider both

historical context (past data) and future expectations (upcoming data) when making predictions,

leading to enhanced accuracy and efficiency.

A key feature of Bi-LSTM is its feedback input mechanism. Each layer receives information not

only from the previous layer but also from the corresponding layer in the reverse iteration. This

allows for a more comprehensive and faster learning process as the network can leverage both past

and future dependencies within the input sequence. In essence, Bi-LSTM's ability to consider both

history and the near future simultaneously provides a richer context for prediction: By

incorporating knowledge of the entire sequence, Bi-LSTM models can generate more precise and

contextually relevant predictions. Moreover, the feedback loop mechanism facilitates efficient

23

information flow and enables the network to learn long-term dependencies within the data more

quickly [32]. Therefore, Bi-LSTM's bidirectional processing and enhanced learning capabilities

make it a powerful tool for various sequence prediction tasks, outperforming traditional LSTMs

in accuracy and efficiency [32].

 Figure 2. 6 Bidirectional LSTM Arcitecher

2.6. Hyperparameter

Deep learning algorithms are changing the way we evaluate and interact with language-based data

by teaching machines to understand text and speech and execute automated tasks such as

translation, summarization, classification, and extraction. It is, however, not an easy task. It

requires careful parameter selection and optimization. In the NLP and machine learning areas,

hyper-parameter optimization has gotten a lot of attention [33]. How well a learning algorithm

performs, from simple ones like logistic regression to complex ones like neural networks, depends

heavily on choosing the right settings for its "tuning knobs" called hyperparameters [33]. These

settings can make a huge difference in how good the algorithm works, but finding the perfect ones

can be tricky. It takes time because there are often many different knobs to adjust and not enough

data to try out all the combinations. Some examples of these hyperparameters include the type of

24

word embedding used, how many hidden layers the model has, how many neurons are in each

layer, how fast the model learns, how much information it randomly drops out during training,

what kind of activation function it uses, and how it optimizes its performance.

2.6.1. Word Embedding

The quest for effective representations of text words has long been a cornerstone of natural

language processing and other machine-learning fields. Initial attempts often employed discrete

one-hot vectors, which, however, were plagued by the "curse of dimensionality" and failed to

capture the inherent semantic relationships between words. Recent breakthroughs in machine

learning have paved the way for low-dimensional and continuous vector representations known as

word embeddings. These embeddings enable significant advancements in downstream tasks such

as machine translation, natural language inference, and semantic analysis, opening doors to

improved performance and broader application possibilities [34].

Word embedding is a powerful tool in the world of natural language processing (NLP). It helps

"translate" words into numbers, but not just random numbers! These numbers capture the meaning

and grammatical connections between words, like a secret code [35, 36]. This allows computers

to understand how words relate to each other, even if they haven't seen those exact words before.

Imagine two words like "ብርቅዬ" and "ብቸኛ." Both words meaning in English are “unique”. They

have similar meanings, right? Word embedding captures this connection by giving them similar

numbers. This way, the computer can learn about new words based on familiar ones, even if it's

never encountered the new word directly. There are two main types of word embedding:

Static: These are like fixed dictionaries; each word has a single, unchanging number code.

Contextual: These are more flexible, taking into account the surrounding words to adjust the

meaning of a particular word. For example, "ገና" in "Ethiopian Christmas" will have a different

meaning than "ገና" in "something that doesn’t occur”

2.6.1.1. Static word embedding

Static word embedding models provide stand-alone re-presentations that are independent of the

words or sentences around them (context [36]. It is produced by analyzing huge text corpora and

recording co-occurrence patterns between words, and it is context-independent, which means

25

that the same word will have the same vector representation regardless of its context. Some of

the static word embedding models are Word2vec, FastText, and Glov

I. Word2vec

Word2Vec is a method for representing individual words using a fixed-length vector,

allowing for the encoding of semantic relationships between them. The meaning of words

within a specific context is captured by this vector-based representation. Word2Vec employs

two methods: Continuous Bag of Words (CBOW) and Skip-gram. The context word in Skip-

gram is anticipated based on the core word provided, but the context word in Continuous

Bag of Words (CBOW) is inferred from the available context information [37].

II. FastText

FastText is a word embedding technique that overcomes the issue of unusual and out-of-

vocabulary terms that Word2Vec has difficulty with. FastText, unlike Word2Vec, uses sub-

word information to construct word embeddings. It works at the character level, capturing

the internal structure and morphological properties of words. FastText represents a word as

the sum of its sub-word vector representations. FastText can effectively handle unusual and

out-of-vocabulary terms thanks to this method, making it a powerful tool for language

modeling and NLP applications [38].

III. Glove

Glove, a popular method for word embedding, can capture the meaning of words based on

how often they appear together in large amounts of text (corpora). Imagine it like building a

map of words, where those that frequently show up close to each other are considered similar

in meaning. This helps the computer understand the relationships between words, even if it

hasn't seen them before in the same context.

The key of Glove is that it analyzes word co-occurrence across various corpora [37], not just

a single one. This broader perspective allows it to gather more comprehensive information

about how words are used in different contexts, leading to more accurate and versatile word

representations.

2.6.1.2. Contextual word embedding

Contextual word embeddings are a type of word embeddings that capture the meaning of words in

their context. In contrast to traditional word embeddings, which assign a fixed vector

representation to each word regardless of context, contextual embeddings provide different

26

representations for the same word based on its usage inside a specific sentence or document. This

contextual information improves the ability of the embedding to capture nuances in word meaning

and distinguish between distinct meanings of a word. Two prominent models for generating

contextual word embedding

I. Embeddings from Language Models (ELMO) is a special way to turn words into numbers

that computers can understand, called word embedding. Unlike older methods, ELMO

considers the specific context of a word in a sentence. ELMO captures these differences by

using two "layers" of information: which are the Character Layer and Bidirectional LSTM

Layers. Character Layer breaks down the word into its letters and analyzes how they combine

to create meaning. Where Bidirectional LSTM Layers consider both the word's beginning

and ending, understanding how it relates to surrounding words in the sentence. By combining

these layers, ELMO creates a unique word embedding that reflects its specific meaning in a

given context. [37] [39]

II. Bidirectional Encoder Representations from Transformers (BERT) is another powerful

tool for understanding language. It also uses word embedding but with a different approach

called a "transformer." Imagine a team of translators, each focusing on a different part of a

sentence and then sharing their insights. BERT works similarly, analyzing words about one

another throughout a sentence. BERT has two ways of analyzing words one is the Masked

Language Model and the other is Next Sentence Prediction. In masked language mode hides

certain words in a sentence and tries to predict them based on the remaining context. This

helps it understand how words connect and what meaning they bring. Next Sentence

Prediction learns to predict whether two sentences belong together, further strengthening its

understanding of relationships between words and ideas [37]. These combined approaches

make BERT a powerful tool for various language tasks, from search engines to question

answering.

2.6.1.3. Character Representation for Linguistic Labeling

Understanding the individual letters (characters) in a word, like prefixes and suffixes, can be

extremely helpful for certain language tasks, particularly those involving identifying the

grammatical role of a word (part-of-speech tagging). Traditionally, this relied on manually

defining specific features to analyze [35]. However, research suggests that utilizing both

27

Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (Bi-LSTM)

networks is a more effective and adaptable approach for representing characters and extracting

their hidden meaning. This allows the model to automatically learn which features are important

for linguistic tasks, potentially leading to greater accuracy and efficiency.

2.6.2. Dropout

The dropout technique is a regularization method often used in deep learning to reduce overfitting.

During training, a proportion of neurons or units in a neural network are randomly deactivated.

This means that the dropped-out units, as well as their connections, are temporarily removed from

the network for a certain training iteration. Dropout has shown to be an excellent regularization

technique and has been widely used in a variety of deep-learning applications. It aids in the

prevention of overfitting, increases model generalization, and contributes to the overall

performance and robustness of deep neural networks [26].

2.6.3. Opoptimizer

In deep learning, training a neural network involves adjusting its internal settings called

parameters. Think of them like knobs you turn to get the network to perform well. Optimizers are

algorithms that help turn these knobs in the right direction, minimizing the loss function. This

function measures the gap between the network's predictions and the actual data it's learning from,

like the difference between a guess and the correct answer. There are many optimizers, each with

its strengths and weaknesses. Some popular ones include Adagrad, Adadelta, RMSProp, Adam,

Nadam, and SGD [35].

Adam is an adaptive optimizer that automatically adjusts the learning rate for each parameter

individually. It's easy to use, efficient and works well with different data scales. It also doesn't

need much memory to work, [40] like a lightweight backpack for learning. SGD (Stochastic

Gradient Descent): This classic optimizer uses the "slope" of the loss function to guide parameter

updates. It's simple and efficient but can be slow and sensitive to how much you adjust the learning

rate. Choosing the right optimizer depends on the specific task and your network's needs. Some

optimizers are faster but less stable, while others are slower but more reliable.

2.6.4. Hidden layers and Number of nodes

 Adding more hidden layers and nodes in a neural network sounds like a good way to boost

accuracy, but it's not always a guaranteed win. Think of it like adding layers to a sieve. While more

28

layers might catch smaller details, too many can also capture unwanted noise, making the model

"memorize" the training data without truly understanding it. This can lead to poor performance on

unseen data. The ideal number of hidden layers and nodes depends on your specific data, task, and

resources It's similar to finding the correct proportion of components in a recipe: explore and try

various configurations to find the sweet spot for your model's performance [34].

2.6.5. Learning rate

In deep learning, it effectively defines how much a model adapts and alters itself during the training

phase based on new inputs. A high learning rate might cause the model to learn quickly and make

large alterations based on each new piece of input. Low learning rates result in slower learning and

fewer modifications. It is safer and prevents instability, but it can take significantly longer to

achieve the appropriate performance, especially in difficult situations. Adjusting the learning rate

affects the weights of neural networks, regulating how much they update their connections

depending on new data. Finding the correct rate is critical for balancing quick learning with

stability and preventing the model from being stuck in local minima. Thus, determining an

optimum learning rate is critical for efficient and effective learning [34].

2.6.6. Activation function

Within neural networks, activation functions serve as critical gatekeepers, dictating how the

weighted sum of inputs translates into an output signal [40]. The typical network architecture

comprises input, hidden, and output layers. The input layer ingests raw data, while hidden layers

progressively process information and propagate it forward. Finally, the output layer delivers the

network's predictions. Depending on the specific task, each layer may leverage a distinct activation

function to optimize the complexity of connections and the precision of forecasts across diverse

problem domains. Rectified Linear Units (ReLU), Logistic (Sigmoid), and Hyperbolic Tangent

(Tanh) are prevalent choices for hidden layers, while Linear, Logistic (Sigmoid), and Softmax find

widespread use in the output layer [35]. This rich tapestry of activation functions empowers neural

networks to model

2.7. Hyperparameter optimization

Finding the best hyperparameters in training neural networks requires hyperparameter

optimization. Manual search, grid search, random search, and Bayesian optimization are among

the approaches that can be employed for this purpose. Manual search relies on intuition and

29

experience to locate optimal hyperparameter values, but it is dependent on professional

competence. Grid search searches the hyperparameter space systematically, but its efficiency

declines as the number of hyperparameters increases. Random search samples from the

hyperparameter space effectively, making it more suitable for high-dimensional areas. Bayesian

Optimization makes use of previous evaluations to direct the search for optimal hyperparameters.

[41] KerasTuner is a scalable and user-friendly hyperparameter optimization framework that

includes search techniques such as Bayesian Optimization, Hyperband Search, and Random

Search. It solves the difficulties of hyperparameter search and assists in the discovery of optimal

hyperparameter combinations [22].

2.8. Related Works

This chapter discusses word prediction research on Ethiopian languages such as Amharic,

Tigrigna, and Afaan-Oromo, as well as foreign languages such as Italian, Swedish, Hindu, and

Assamese. Many scholars have examined word prediction, and numerous studies, notably for non-

inflected and less-inflected languages, have been proposed and implemented throughout the years.

Some work on highly inflected languages has been completed. The researcher's work can be

presented here by categorizing it as Word Prediction for Ethiopian Languages and Word Prediction

for Foreign Languages.

2.8.1. Word Prediction for Ethiopian Languages

Nesredin Suleiman et al. [23] developed word prediction for Amharic online handwriting

recognition. The aim was to develop a statistical word prediction model based on word frequency.

The researchers created a corpus of 131,399 Amharic words and 17,137 names of people and

places to develop their word prediction model. They created a corpus of Amharic words and names

and extracted statistical information to calculate the value of n in the n-gram model and the average

word length. Using a bi-gram model with n=2, they predicted words based on the first two

characters. The prototype had a prediction accuracy of 81.39%. However, the model ignored

context information and relied on a dictionary method for word prediction.

Tigist Tensou [2] developed Amharic word prediction using statistical methods and linguistic

rules. It required building language models and generating predicted words. Morphological

analysis, word sequence prediction, and morphological generation were critical components. The

models were then constructed to capture the root/stem and morphological features of words, such

30

as aspect, voice, tense, and affixes. Furthermore, the models extracted preferred morpho-syntactic

elements such as gender, number, and person from the user's content to ensure proper grammatical

agreements between words. The models were trained on a wide range of news texts to capture

morphological aspects as well as desired morpho-syntactic features. Keystroke savings of 20.5%

(hybrid model), 17.4% (tri-gram model), and 13.1% (bi-gram model) were discovered throughout

the study. While the hybrid model performed better, The study utilizes a series of words to take

into account contextual information, yet it employs a statistical language model known as N-gram,

which struggles to capture long-term dependencies effectively.

Alemebante Mulu et al. [3] used statistical approaches to develop an Amharic text prediction

system for mobile phones. The Amharic corpus has 1,193,719 words, 242,383 Amharic lexicons,

and a list of person and place names totaling 20,170. The word prediction system input on the first

two letters is written and listed down, based on the frequency of the word and alphabetically if the

frequency is the same. They have a 91.79% forecast accuracy. Due to the utilization of statistical

methods, the research encounters challenges in capturing long-term dependencies.

D Endalie et al. [4] used the Bi-directional Long Short Term-Gated Recurrent Unit (BLSTGRU)

network model to predict words in Amharic. Their network model was tested with 63000 Amharic

bible sentences and produced an accuracy of 78.6%. The proposed model was compared against

state-of-the-art models such as LSTM, GRU, and BLSTM by the researchers. This study employed

data from a single source, which does not allow for the consideration of multiple forms of text.

The epoch size is also 1000, which is too large for training huge amounts of training data and can

result in overfitting. Furthermore, no out-of-vocabulary terms were handled, no text was

standardized, and the effect of pre-trained word embedding was not explored.

Y.T.Tesema [21] explored the application of Bi-LSTM, a deep learning approach, to predict the

next word in Amharic text. The corpus comprised 37,565 word sequences, encompassing 13,314

unique words. Employing a design science research methodology, the study aimed to identify

optimal hyperparameters and embedding techniques for the model. Experiments revealed that the

combination of 102 LSTM units, tanh activation function, 0.5 dropout rate, a learning rate of

0.00066283, batch size of 32, 10 training epochs, and the Adam optimizer yielded the best

performance. Notably, FastText word embedding outperformed both word2vec and Keras

embedding, achieving 91.02% accuracy on the training set and 90% on the testing set. These

31

findings suggest the potential of Bi-LSTM with FastText embedding for Amharic next-word

prediction. However, Increasing the data volume and training epoch size will further increase the

performance of the model.

W.T.Mamow [42] developed a Next Word Prediction System for the Geez language by combining

a statistical method of N-gram with back off and a morphological analyzer. Normalization of

letters with the same sound is not possible in geez because the letters have distinct meanings than

in Amharic. This method saved 35.7% of keystrokes.

S.K. Berhe [12] developed word sequence prediction for the Tigrigna language using n-gram

statistical models based on two Markov language models. The model was evaluated using an

accuracy evaluation metric, and it achieved an average performance of 85% for correctly predicted

words using a sequence of two tags and 81.5% using a sequence of three tags. The results showed

that word prediction using a sequence of two tags outperformed the sequence of three tags

A. B. Delbeto [43] developed Word sequence prediction for the Afaan Oromo language using the

statistics method. The study used the n-gram approach of bi and tri-word statistics and syntactic.

The model is built for a root or stems with tags like nouns, verb, adjectives, pronoun, adverbs, and

conjunctions The corpus has 23,400 sentences and a 49,143 unique words. Keystroke Saving

(KSS) is used to measure system performance once the model has been trained. According to the

results of the evaluation, the primary word-based statistical system achieved 20.5% KSS, while

the second system, which employed syntactic categories with word statistics, achieved 22.5%

KSS. As a result, statistical and linguistic rules have great promise for Afaan Oromo word

sequence prediction.

2.8.2. Word Prediction for Foreign Languages

Aliprandi et al. [44] concentrated on creating FastType, a word prediction system for the Italian

language. To improve keystroke efficiency, the system employs statistical and lexical approaches,

as well as robust language resources. It includes a user interface, a prediction engine, and linguistic

resources. The key component is the predictive engine, which manages communication with the

user interface and keeps track of prediction status and entered words. The system makes use of

morpho-syntactic agreement, lexicon coverage, and access to language models and a large lexicon.

POS n-grams and Tagged word (TW) n-grams are used to enrich the prediction engine's

32

morphological information. For the Italian language, the method combines POS trigrams and

simple word bigrams models. To construct POS and tagged word n-grams, training data from

diverse sources, including newspapers, magazines, documents, letters, and emails, is employed. A

different test set is used to evaluate the system's performance based on keystroke saving (KS),

keystroke until completion (KUC), and word type saving (WTS) factors. The results show a

significant gain in typing efficiency, with a 51% savings compared to non-inflected languages.

Furthermore, a 29% word type saving and 2.5 keystrokes until completion are noted.

S. Radhika et al [32] propose a new way of predicting the next word in a Hindi sentence, to reduce

the user's keystrokes. For this job, the paper investigates two deep learning strategies, Long Short

Term Memory (LSTM) and Bi-LSTM. The LSTM accuracy was 59.46% and the Bi-LSTM

accuracy was 81.07%.

P.B. Partha et al. [45] developed in the Assamese language an LSTM model that was provided to

the user to predict the next word(s) given a set of current words. They deal with the problem of

words with various synonyms by storing the Tran-scripted Assamese language, according to the

International Phonetic Association (IPA). Their model walks through their dataset of transcribed

Assamese words and predicts the next word using LSTM with an accuracy of 88.20%. The results

reveal that LSTM is quite effective in next-word prediction, especially for under-resourced

languages.

S. Rajakumar et al. [46]developed next-word prediction using machine learning for the English

language. They suggest a novel technique for anticipating the following word in an English phrase.

They used deep learning algorithms LSTM and Bi-LSTM to analyze the problem of next-word

prediction. Based on the evaluation they have got an accuracy of 59.46% using LSTM and 81.07%

with the Bi-LSTM. The research is helpful on keystrokes assisting users in saving typing time

reducing user spelling errors and helping non-native speakers learn the language by suggesting

new and correct next-word predictions.

Afika Rianti et al. [25]designed a next-word prediction using the deep learning method of LSTM.

They used a dataset that contains 180 Indonesian destinations from nine provinces. The model

could be used to predict the next word by giving the input of the destination. They trained the

model with 200 epochs and based on their evaluation they have an accuracy of 75 % and a loss of

55%.

33

Omor Faruk Rakib et al. [47] propose a novel next-word prediction system for the Bangla language

utilizing the Gated Recurrent Unit (GRU) deep learning method. Their system predicts subsequent

words and suggests corresponding full sentences. This approach leverages an n-gram dataset to

create a language model capable of predicting the next word in a provided sequence. The dataset,

meticulously curated from diverse Bangla sources, ensures a comprehensive representation of the

language. The authors evaluate their proposed model against Long Short-Term Memory (LSTM)

and a baseline model utilizing Naïve Bayes with Latent Semantic Analysis (LSA). Their system

demonstrates impressive performance, achieving an average accuracy of 99.70% for a 5-gram

model, 99.24% for a 4-gram model, and 94.84% for a Tri-gram model. Notably, the performance

diminishes for lower n-gram models, reaching 78.15% and 32.17% for Bi-gram and Uni-gram

models, respectively. These results highlight the effectiveness of the proposed GRU-based

approach in capturing complex word dependencies and generating accurate next-word predictions

in Bangla.

2.9. Summary

Word prediction best applicable in non-inflected languages, but it is challenging in inflected

languages like Amharic. Inflected languages constantly twist and turn words, demanding the

model to store a vast library of all possible variations. Analyzing word structure and grammar

perfectly becomes crucial, like deciphering a complex puzzle, and even then, offering too many

suggestions can drown users in choices, while too few leave them lost and frustrated. It's a delicate

dance between memory, accuracy, and user experience, making word prediction in these languages

a challenging task [2, 48].

The related works in Amharic word sequence prediction using the BLSTM network

model focused on developing models to assist in typing and text prediction for

the Amharic language. This is important because Amharic is a Semitic language spoken

in Ethiopia and has a complex writing system and grammar, making it challenging for non-native

speakers to type accurately. The studies used various deep-learning techniques to develop models

for tasks such as text prediction, classification, sentiment analysis, speech recognition, and

clustering. They also used different datasets and evaluated their models using various metrics such

as accuracy, F1-score, and more. The results showed that the BLSTM models combined with word

embedding produced promising results with high accuracy in Amharic word sequence

prediction compared to other state-of-the-art models. These studies provide insights into the

34

development of Amharic language models and show the potential for using deep learning

techniques to improve typing accuracy and efficiency in Amharic.

35

CHAPTER THREE

3. AMHARIC LANGUAGE

3.1. Amharic Language and its Writing System

Amharic is an official language of the country's, it serves as the voice of government and daily life

in the north-central region. Its influence extends beyond borders, growing in Ethiopian cities and

among Ethiopian communities distributed across the Middle East and North America [49].

Amharic, a Semitic language, has profound linguistic relations with Hebrew, Arabic, and Syrian.

Its written form, created with the ancient Ge'ez script (also employed in Ethiopian Orthodox

Church ceremonies), exposes 33 distinct characters and an extra seven consonant-vowel

combinations [2, 49].

The Amharic writing system employs a unique repertoire of 238 characters. This intricate system

is built upon 33 fundamental characters, known as "fidäl," each capable of assuming seven distinct

forms. The basic form represents the consonant itself, while the remaining six non-basic forms

depict various consonant-vowel combinations, forming syllables. Notably, these non-basic forms

are generated from their corresponding basic forms through a set of generally predictable

modifications. For instance, second-order characters are often formed by adding strokes to the

right side of the core character [50].

3.2. Amharic Part of Speech

POS tagging is an essential task in natural language processing that aids in the analysis of sentence

syntactic structure and facilitates subsequent language processing tasks. Words in Amharic, like

words in any other language, can be categorized into various parts of speech based on their

grammatical functions and syntactic roles within a sentence. Here are some common Amharic

parts of speech: noun, pronoun, adjective, verb, adverb, conjunction, and preposition.

3.2.1. Nouns

Nouns are words used to describe persons, places, things, or abstract concepts. In Amharic, nouns

can have up to two prefixes and four suffixes for each stem. Nouns can be identified by their

suffix since they can add suffixed by bound morphemes such as ኤ/E, ኡ/u, ኦች/och, ዎች/woc, and

thus allows nouns to be easily identified [2]. Table 3.1 shows examples of gender, number, and

case marker suffixes for Amharic nouns.

36

 Table 3. 1 Amharic Noun suffixes in gender, number, and case Markers

 Gender marker Number marker Case marker

Word Masculine Feminine Singular plural nominative Accusative

“ጎልማሳ”/

“golemasa”

“ጎልማሳ”/

“golemasa”

“ጎልማሳ-ኢት”/

“golemasa –it”

” ጎልማሳ”/

“golemasa”

“ጎልማሳ-ኦች”/

“golemasa -och”

“ጎልማሳ”/

“golemasa”

” ጎልማሳ-ን”/

“golemasa -n”

“ዶሮ”/

 “doro”

“ዶሮ”/

“doro”

ዶሮ-ኢት”/

“doro -it”

“ዶሮ”/

“doro”

“ዶሮ-ኦች”/

“doro -och”

“ዶሮ”/

“doro”

” ዶሮ-ን”/

“doro -n”

3.2.2. Pronoun

Pronouns are a small group of words with a variety of linguistic purposes. Pronouns are classified

into various categories, including demonstrative, possessive, interrogative, and personal pronouns.

Serving as substitutes for the speaker, the listener, and any other individuals or objects mentioned

in the conversation, these pronouns play a crucial role in effective communication. They are further

divided into groups according to person, gender, and number; distinct affixes serve as indicators

of these groups [2]. Table 3.2 is a list of sample pronouns arranged methodically based on the

person, number, and gender features to give a thorough understanding of pronouns.

 Table 3. 2 Amharic pronouns

 Personal Pronouns

Person Gender Singular Plural

1st I, We እኔ/Ene እኛ/Ega

2nd Masculine You አንተ/Ante እናንተ/Enante

 Feminine You አንቺ/Anchi

3rd Masculine He, They እሱ/Esu እነሱ‖/‖‘Nesu‖

 Feminine She እሷ/Eswa

 Polite You እርስዎ /Erswo , አንቱ/Ante

37

3.2.2.1. Demonstrative pronouns

Pronouns that convey an object's location or proximity to the speaker or spectator fall into the

category of demonstrative pronouns. These pronouns can be used to describe objects that are either

nearby or far away from the person identifying them or the viewer. As a result, these pronouns are

categorized according to the gender of the object being referred to as well as its distance from the

specified object [2]. For example, in Amharic, the demonstrative pronoun "ይህ" (yəh) designates

a masculine-gender item that is near the speaker or observer. Conversely, the pronoun "ይቺ" (yci)is

used to designate a nearby object that is feminine.

3.2.2.2. Reflexive pronouns

Reflexive pronouns are employed alongside personal pronouns. Reflexive pronouns include words

like ‖እኔ ራሴ‖/‖‘EnE rasE,/myself, ―አንተ ራስህ‖/‖‘ante rash‖/yourself, እc< ^c</‖/‖Esu

rasu‘/himself, እ— ^d‹”/‖/‖Ena rasachne/ourselves, and እናንተ ራሳችሁ‛/‛’enante rasachu

/themselves. They refer to a person or object. When something is odd or unusual, we can use a

reflexive pronoun to emphasize it. To emphasize a reflexive pronoun, we can use it in conjunction

with the nouns. We can use it for singular as well as plural forms

3.2.2.3. Interrogative pronouns

An interrogative pronoun is used to ask questions. There are just five interrogative pronouns in the

English language. Each one is used to pose either a direct or indirect query. Some words, like as

"who" and "whom," solely relate to persons. Others can be used to describe things or individuals.

In similar Amharic language have an interrogative pounce. For example :- Who/ማን‖/ ‖man‖/,

What/ምን‖/ ‖min‖/, where/የት‖/‖yet‖/, when/መቼ‖/‖mecE‖/, and How /እንዴት‖/‖‘ndEt‖

3.2.2.4. Possessive pronouns

Possessive pronouns are used to indicate possession of something and are generated by adding the

prefix /ye to personal pronouns. [2]. Possessive pronouns can be singular or plural. For example,

My//የእኔ‖/‖/ye'nE, Your/የአንተ‖/‖ye‘ante‖ and His/የአንተ‖/‖ye‘ante‖ are for singular possessive

pronouns, and Our//ye'Na, and Their//ye'nante are for plural possessive pronouns.

38

3.2.3. Adjectives

Adjectives are linguistic elements that describe or modify nouns or pronouns, and they usually

come before the word they modify. They provide additional information about the noun or pronoun

with which they are linked. Various characteristics distinguish items from one another, such as

shape, behavior, color, and so on, and these distinctions are communicated through the use of

adjectives. Adjectives, like nouns, can change in gender, number, and case [2].Examples: ‚

 “ቀይ በግ”/ “keye beg” /Red Sheep ሰነፍ ተማሪ‛/ senfe temari / lazy student In the first sentence,

the term “ቀይ”/ keye/Red is an adjective that modifies the noun “በግ”/beg/Sheep, providing further

details regarding the hue of the Sheep. In the next sentence, the term ሰነፍ / senfe / lazy is an

adjective that qualifies the noun “ተማሪ”‛/temari/student, providing further details regarding the

student, who is lazy.

3.2.4. Verb

A verb is a word used to represent the occurrence of an action or to denote the presence of a specific

state or situation. Verbs in Amharic are highly intricate, comprising of a stem along with a

maximum of four prefixes and four suffixes. The verb forms are modified to convey various

aspects such as individual, gender, quantity, and time, with the standard verb form being the third

person masculine singular. Distinct suffixes that change depending on the person and number are

what characterize passive voice verbs [2].

3.2.5. Adverb

Adverbs are language constructions that function to modify verbs, just like adjectives qualify

nouns. They are essential in giving further details on the action being carried out. Adverbs can be

categorized according to several factors, including place, time, situations, and more. [2] The phrase

"በቀሰታ" (bekesta) modifies the main verb "እየተራመደች" (eyeteramdech), meaning "walking," in

the Amharic line "ልጅትዎ በቀሰታ እየተራመደች ነበረ" (ljetwa bekesta eyeteramdech neber), which

translates to "The girl was walking slowly." The use of the word "bekesta" in this context adds

details about the girl's gait, emphasizing that it was slow.

3.2.6. Preposition

Prepositions are a limited group of words that are frequently used in front of nouns to indicate how

they relate to the other words in the phrase. These terms are essential for denoting chronological,

39

geographical, or logical relationships. Some of the example prepositions in the Amharic language

are "ለ" (le), "እንደ" ('nde), and "ከ" (ke).

3.2.7. Conjunction

A conjunction is a word that serves as a connector, linking various elements such as words,

phrases, clauses, and sentences. Although they are relatively few, Conjunctions possess the

flexibility to be utilized with verbs, nouns, and adjectives. Example:‖እና ‖/‖ ‘na‖,

―ስለሆነም‖/‖slehonem‖, ―ነገር ግን‖/‖negergn‖, etc.

3.3. Amharic Morphology

Morphology encompasses the analysis of words and their formation, as well as the complex

relationships that words have with other lexemes within a language. [1] A morpheme is the

smallest unit of a word that contains meaning. [2] Morphology studies the various types of

morphemes, such as roots, prefixes, and suffixes, and how they interact to form words. words can

be altered through processes such as inflection and derivation. [2] Morphemes are classified as

either free or bound in the Amharic language. Free morphemes can express meanings that are

autonomous and self-contained, but bound morphemes require attachment to other free

morphemes to transmit semantic importance.

Examples:

Free Bound Free + Bound

በግ‖/‖beg‖ ኤ‖/‖-‗E‖ በጔ‖/‖begE‖

አጎት‖/‖agote‖ ህ‖/‖-h‖ አጎትህ‖/‖agoteh‖

The language Amharic demonstrates a high level of morphological complexity, with a root-pattern

structure. A cluster of consonants makes up a root in this structure, and vowels are added between

the consonants to produce stems. Given Amharic's extensive morphology, it is possible for a single

root word to give rise to several word variants, each with unique linguistic characteristics.

40

Take the word "ኣጠበች" (atebech), for example. It can be broken down into two morphemes:

"ኣጠበ" (atebe), which denotes the word's root or stem, and "-ች" (-c), which denotes a further

significant part of the word.

3.3.1. Inflectional Morphology

Inflectional morphology is the process of assigning grammar features to nouns, verbs, and

adjectives. These characteristics include person, gender, number, case, definiteness, and time.

Noun inflection utilizes suffixes to indicate gender, number, and case. Person, gender, number,

case, definiteness, and time are examples of these characteristics. Suffixes are used in noun

inflection to indicate gender, number, and case. The default form of the verb is third person,

masculine, and singular, although it has the ability to be modified for person, gender, number, and

tense.Typically, the perfect tense is employed to express the past tense. Prefixes denote masculine

and feminine subjects, but suffixes denote first, second, and third-person future forms. Adjectives,

like nouns, undergo inflection for gender, number, and case [2].

3.3.2. Derivational Morphology

Amharic demonstrates a variety of affixation processes in the area of derivational morphology,

including the application of prefixes, infixes, and suffixes to create new nouns from base nouns,

adjectives, verbs, stems, and roots. Conversely, verbs, nouns, verbal roots, and stems can all be

given a suffix to create an adjective. Specifically, infixation functions as a process that separates

adjectives from verbal roots, setting it apart from other word classes. Notably, Amharic verbs have

a quite restricted propensity to originate from other parts of speech (POS).

3.4. Amharic Grammar

The structure of sentences, clauses, phrases, and words in natural language is governed by a set of

structural rules known as grammar. These rules give instructions on how to organize words in

sentences so that they make sense and are coherent. Word order and morphological agreements

are two major components of Amharic grammar in this context. Every word in an Amharic phrase

must follow the proper grammatical agreements and word order to accurately convey meaning to

readers.

Formal Amharic texts adhere to a subject-object-verb (SOV) word order, in contrast to English,

which employs a subject-verb-object (SVO) arrangement. Although there are cases of OSV

41

sequences like /ljun Alemayehu mekerew/The boy is advised by Alemayehu in some Amharic

texts, where the object is suffixed by object marker /n, this word order is not commonly seen in

formal Amharic texts.

Table 3. 3 A Structure of word order in an Amharic sentence.

 ፖሊሱ ልጅን መታው(SOV)

(Polisu legun metawu)

The police officer

kicked the boy(SVO)

Subject ፖሊሱ(polisu) The police officer

Object ልጅን (legun) kicked

Verb መታው(metawu) the boy

Research on Natural Language Processing (NLP) needs to look at and evaluate different word

sequences that appear in linguistic constructs. The word order patterns about adjectives and nouns,

adverbs and verbs, and the main verb's placement about the sentence's finish are especially notable.

An essential grammatical rule of the Amharic language states that adjectives must always come

before the nouns they describe, regardless of any words that may come in between. In the same

vein, adverbs always come before the verbs they modify, following a recognized syntactic pattern

3.4.1. Subject and Verb Agreement

The term "subject" in linguistic analysis refers to a component of a sentence or expression, usually

a noun, noun phrase, pronoun, or its synonym, that functions as the object about which the rest of

the sentence makes claims and with which the verb concurs. Often, the verb's action is represented

by the subject. In Amharic, subjects are usually found at the start of sentences. It is necessary for

the subject and the accompanying verb to agree on a number of grammatical features.

Take, for example, the expression "ፖህሱ ልጅን መታው" (Polisu legun metawu), which means "The

policeman kicked the boy." Here, the subject "ፖሊሱ" (Polisu) expresses information about person,

gender, and number in the following ways: it is singular, masculine, and third-person, respectively.

The verb "መታው" (metawu), which means "kicked," reflects these morphological characteristics.

Should any of these grammatical attributes be incorrectly given to the verb, the phrase will not

42

follow the correct grammatical structure, leaving the readers in the dark. For example, the above

sentence would disagree with the subject and be grammatically incorrect as well as possibly

difficult to understand if it were written incorrectly as "ፖህሱ ልጅን መታውቸው" (Polisu legun

metatachew), where the verb misrepresents feminine gender agreement.

3.4.2. Object and Verb Agreement

An object, encompassing nouns, pronouns, or noun phrases, represents the entity upon which an

action is exerted or impacted by the verb. In the context of using a noun as an object within a

sentence, it is possible for the object to be suffixed. It is crucial for the object in a sentence to

exhibit concordance with the accompanying verb in terms of gender, number, person, and case[2].

For instance, consider the sentence "ፖሊሱ ልጅን መታው" (Polisu lejun metawu), meaning "The

police officer kicked the boy". Here, the subject "ፖሊሱ" (Polisu) as the police officer indicates

person, gender, and number information, specifically third person, masculine, and singular,

respectively. These morphological properties are reflected in the verb "መታው" (metawu) denoting

"kicked". Any misalignment of these grammatical features in relation to the verb leads to the

sentence deviating from proper grammatical structure, thus introducing ambiguity for the readers.

For example, if the above sentence is mistakenly written as "ፖሊሱ ልጅን መታቸው" (Polisu lejun

metachewu), where the verb incorrectly reflects feminine gender agreement, it results in a

disagreement with the subject. Similarly, inconsistency in person and number can pose challenges

in Amharic sentences. For instance, a sentence like "ፖሊሱ ልጅን መታአት" (Polisu lejun metaete),

where the verb erroneously reflects a plural agreement, exhibits a discrepancy in number as the

singular subject of the sentence is inaccurately matched with a plural verb.

3.5. Amharic punctuation

Punctuation is used in various languages, including Amharic, to help in reading and

comprehension, to show sentence structure, and to improve clarity. Even if the precise punctuation

symbols used in Amharic may not be the same as those in English, they yet have comparable

purposes. Here are a few Amharic punctuation symbols that are often used: Table 3.5 shows

Amharic punctuations with their corresponding purpose

43

Table 3. 4 Table Amharic punctuations adopted from [21]

No Symbol Punctuation mark Purpose

1 ፧ Question mark  Marks the end of a question. Similar to a

question mark in English.

2 ፨ Exclamation mark  The exclamation mark is used to express

strong emotions, surprise, or emphasis. It is

placed at the end of a sentence or phrase to

convey an exclamatory tone

3 ፣ Comma  The comma in Amharic serves to separate

words, phrases, or clauses within a

sentence. It helps to create pauses and

clarify the structure of a sentence.

4 ፤ Semi-colon  The semi-colon is used to separate closely

related independent clauses or to separate

items in a list when commas are already

present.

5 ... Three dots  Similar to an ellipsis in English. Indicates

an omission, unfinished thought, or trailing

off.

6 () Parenthesis To enclose elaboration

7 « » Quotation mark Used at the beginning and the end of quoted

words, phrases, etc.

8 ። Four dots Mark the end of a sentence

9 ፡ Colon The colon is used to introduce a list,

explanation, or example. It indicates that

what follows is a continuation or elaboration

of the preceding statement.

44

CHAPTER FOUR

4. SYSTEM DESIGN AND MODELING

4.1. Overview

This research focuses on constructing a Word Sequence Prediction Model for the Amharic

language, utilizing the robust capabilities deep learning method of a Bi-directional LSTM

(BILSTM) architecture. This section dissects the proposed model's architecture, design, data

preparation strategies, and the evaluation methods employed to gauge its effectiveness. The model

comprises dedicated components tailored for the prediction task, each trained and tested on distinct

datasets. Its operational flow encompasses three crucial stages: training, validation, and testing.

To assess the model's performance rigorously, we employ various evaluation metrics, including

accuracy and perplexity, providing a comprehensive understanding of its strengths and

weaknesses.

4.2. System Architecture

The system design for a word sequence prediction model for Amharic languages based on the deep

learning method of BILSTM consists of five major components: data set collection and

preprocessing, pre-trained model selection, fine-tuning the model, model evaluation, and the

proposed BILSTM model architecture.

45

 Figure 4. 1 Proposed Architecture

4.3. Data collection

The corpus of Amharic texts is compiled from various mass media sources. Fana, Walta, Ethiopia

Press, and ALALAN Amharic news are data sources. These sources were utilized to improve the

dataset's quality. It is also feasible to obtain a significant amount of mixed data because they can

broadcast many social, political, and economic topics while using different linguistic expressions

for each of them. As a result, gathering data from those media boosted the data's quality and

diversity.

46

4.4. Data Preprocessing

Text preprocessing is essential for Natural Language Processing (NLP) systems because it lays the

foundations for their overall success. Text preprocessing enhances the efficient and accurate

functioning of Deep Learning algorithms by translating raw text into a more structured and

uniform format. The model's performance is directly influenced by the quality of the preprocessed

text. Inconsistencies and irregularities in the data can cause unexpected behavior and inferior

performance if the input text is not correctly preprocessed. As a result, thorough text preprocessing

is required to fully realize the potential of NLP models.

4.4.1. Data cleaning

The data cleaning procedure carefully refines raw text data by removing unnecessary items that

can impede the performance of natural language processing (NLP) models. This includes deleting

non-Amharic text, Arabic numbers (0-9), Geez numerals, English and Amharic punctuation,

special symbols, non-Amharic characters, and unneeded whitespace. By removing these features,

the data cleaning procedure guarantees that the text data remains focused on the core Amharic

language, allowing NLP models to operate more effectively and reliably.

4.4.2. Short-form Expansion

Amharic short forms, often known as abbreviations, are extensively used in everyday

communication to convey lengthier words or phrases in a compact manner. These abbreviations

can be seen in different types of written Amharic, including social media, news articles, and casual

conversations. Expanding Amharic short forms entails replacing the reduced form with its full-

length equivalent. This procedure is critical for effective comprehension and interpretation of

Amharic literature.

4.4.3. Text Normalization

Normalization is the process of transforming a collection of orthographically diverse words into a

more uniform and standardized representation. It encompasses a series of interrelated tasks aimed

at establishing a consistent foundation for text processing by eliminating punctuation, converting

numerals to their corresponding word forms, and ensuring that all words are treated equally. This

process plays a crucial role in enabling consistent and accurate text analysis by addressing

homophones, instances where characters with distinct symbols share the same pronunciation. In

Amharic, there are different characters that have the same sound but are written in different forms

47

For example, the characters {ሠ፣ ሰ}, {ጸ፣ ፀ}, {ሀ፣ ኃ፣ ሐ}, and {አ፣ ዓ፣ ዐ}, along with their seven

subcomponents, are among the characters that can be interchangeably used to form

orthographically variant words. Once these homophones are identified, they are normalized to their

most prevalent representation throughout the corpus. [51]

4.4.4. Tokenization

Tokenization involves segmenting strings of text into smaller units called tokens. This process can

be applied to various linguistic levels, from breaking down large text blocks into sentences to

dividing sentences into individual words. In our case, we have employed tokenization to split

sentences into their constituent words. We have utilized the whitespace between words as the

delimiter for word separation. Additionally, we have treated the Amharic full-stop character (።),

which serves as a sentence-ending marker, as a distinct token.

4.4.5. Determining the Sequence Length

The amount of words in each sentence differs after tokenizing sentences into words. However,

neural networks require identical sequence length, and this sequence length is set to 7 because

large sequences may not be noticed in the dataset and hence cannot be used frequently. As a result,

lengthier Sentences with word lengths of more than seven cannot be utilized directly for training

39 without being converted into subsequences. So, by slicing a window size of 7 from left to right,

each sentence was turned into a seven-sentence subsequence.

4.4.6. Extracting frequent word sequences

To facilitate word sequence prediction, the model employs a dedicated dictionary. This dictionary

associates keys – sequences of seven words or less – with their corresponding frequency within

the training corpus. However, due to resource limitations, only sequences appearing more than

once within the dataset were incorporated into the dictionary while constructing the Amharic word

sequence prediction model.

4.4.7. Sequence padding

Sequence padding is a typical approach for dealing with variable-length sequences of words or

tokens. Because neural networks function on fixed-length input data, sequence padding ensures

that all input sequences are the same length, allowing for fast processing and training. For this

48

research, sentences that have word lengths shorter than seven and longer than two are extended

with padding prior to reaching the maximum word sequence length of seven.

4.4.8. Input and output

Following the completion of sequence padding, each word sequence is transformed into input and

output pairs, where the initial six words form the input, and the seventh word represents the

predicted or target term.

4.4.9. Train-test split

The data was divided into three categories: training, testing, and validation. The data was divided

as follows: 70% for training, 20% for validation, and 10% for testing. A training set was employed

to accomplish this. The validation set is used before training to test the model's performance on

previously unknown data and to optimize the model's hyperparameters. After training, testing data

is used to evaluate the model's performance on previously unseen data at the time of training.

4.5. Word embedding

To enable machines to comprehend words, it is essential to represent them as vectors, which serve

as input for various tasks like text classification and natural language generation. Bidirectional

Long Short-Term Memory (Bi-LSTM) networks are commonly employed for language modeling.

Within the context of this research, the focus lies on word embedding techniques. Word embedding

involves generating continuous vector representations for individual words, facilitating the

measurement of similarity between words based on their proximity in vector space. Noteworthy

word embedding algorithms encompass Word2Vec, FastText, Keras, GloVe, BERT, and ELMO.

In this study, the researcher developed a word sequence prediction model utilizing FastText,

Word2Vec, GloVe, and Keras embedding models. The performance of these models was

subsequently compared in the context of word prediction, providing insights into their

effectiveness.

FastText shines in capturing rare and out-of-vocabulary words, a vital advantage for

morphologically rich languages like Amharic. It achieves this by breaking down words into

smaller units called character n-grams, then summing the vector representations of these sub-

words. This clever approach allows unseen words, even those never encountered during training,

to inherit meaning from familiar sub-words they share with known vocabulary. Words with

49

overlapping character sequences naturally exhibit semantic similarities, reflected by their close

proximity within the vector space. [38]

4.6. BILSTM Language Model

Deep learning algorithms are increasingly being used for solving dynamic classification problems,

where data features and class labels can change over time. This necessitates algorithms that can

handle such evolving dynamics, such as recurrent neural networks (RNNs), and Long Short-Term

Memory (LSTM) networks. RNNs are particularly powerful for tasks requiring long-term

dependence on past data, such as time series prediction. However, they are susceptible to vanishing

gradients, making it difficult to learn long-range dependencies and update earlier weights. LSTMs

were specifically designed to overcome this limitation by incorporating a gated memory cell that

controls information flow and allows them to learn long-range relationships effectively. [52]

This study investigates the use of Bi-LSTM networks to build an Amharic Word Sequence

Prediction Model. Unlike traditional LSTMs, Bi-LSTMs may process input in both forward and

backward directions, allowing them to include context from previous and subsequent parts. This

improved contextual understanding results in a significant improvement in the precision of

predicting the next word.

The core of the Bi-LSTM architecture lies in its gated components: the input gate, forget gate, cell

state, and output gate. The input gate selectively adds relevant new information to the cell state,

while the forget gate removes irrelevant or outdated information. The cell state acts as a repository

of long-term memory within the sequence, holding valuable information that may be useful in the

future. Subsequently, the output gate intelligently selects the most pertinent information from the

cell state and transfers it to the subsequent layer of the network [32].

This interplay between the gates and the cell state enables Bi-LSTMs to efficiently analyze

sequential data, capture long-range dependencies, and ultimately achieve superior performance in

next-word prediction tasks for the Amharic language. The architecture representation of the

BiLSTM model employed in the present study is illustrated in Figure 4.2.

50

Figure 4. 2. BILSTM Flow diagram

4.7. Hyperparameter

The four important hyperparameters shared by Word2vec, FastText, GloVe, and Kerase

embedding are vector dimension, epoch, and learning rate. The vector dimension controls the level

of detail captured in word representations, with bigger sizes necessitating more training data and

resources. Epochs dictate how many times the model iterates over the data, whereas the learning

rate governs how quickly it converges. Notably, FastText provides the sub-word length

hyperparameter, which defines the size of character n-grams for subword representation, a feature

missing from Word2vec and GloVe's whole-word approaches [53, 54, 55].

4.8. Activation function

Activation functions play a crucial role in neural networks, determining how information flows

between layers. Their choice depends on several factors, including the task type, layer type, and

51

network architecture. For instance, hidden layers in Multilayer Perceptrons (MLPs) and

Convolutional Neural Networks (CNNs) often utilize ReLU functions for their efficiency.

Recurrent Neural Networks (RNNs) commonly employ Tanh or Sigmoid activations in their

hidden layers for their smooth gradients. The output layer's activation function further depends on

the specific problem. Sigmoid is suitable for binary classification tasks. while Softmax excels in

multi-class scenarios. Linear activations are preferred for regression tasks. In this study, given the

multi-label nature of next-word prediction, the output layer utilizes a Softmax activation function.

[56]

A sigmoid function is an activation function that is used in neural networks to compress input

values into a range between 0 and 1. It is defined by the formula

𝑆(𝑥) =
1

(1 + 𝑒)−𝑥

The Softmax function is a powerful tool in deep learning, particularly for tasks like multi-class

classification. It takes a vector of real numbers and transforms it into a vector of probabilities,

ensuring they sum to 1. The equation for the softmax function is expressed as:-

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
exp (𝑧−𝑖)

𝑠𝑢𝑚(exp (𝑧−𝑗)
 for all i in n

where: z is the input vector of logits, z_i is the i-th element in the vector, n is the length of the

vector (number of categories), exp is the exponential function and sum is the sum function applied

to all elements in the vector.

4.9. Optimizer

Optimizers play a crucial role in deep learning, guiding the model towards the optimal solution

during training. They iteratively update the model's parameters (weights and biases) based on the

loss function, aiming to minimize the error between the model's predictions and the actual values.

52

Choosing the right optimizer can significantly impact the training speed, convergence behavior,

and overall performance of the proposed model. [57]

4.10. Hyperparameter tuning

Before training the model, the researcher carefully designed its hyperparameters for optimization.

This involved specifying a range of possible values for each hyperparameter, including optimizer,

dropout rate, learning rate, epoch, batch size, number of LSTM units, and LSTM activation

function. To find the best combination of hyperparameters, the researcher employed a random

search algorithm from Keras Tuner, supplemented with manual trial-and-error adjustments. This

combined approach leveraged the efficiency of automated searching while allowing for targeted

adjustments based on specific observations.

4.11. Model Training

Once the model architecture was finalized with optimal hyperparameters, its training regimen was

configured. This involved specifying the optimizer algorithm, learning rate, loss function, and

desired performance metrics. Subsequently, the model was trained through iterative learning

cycles, fitting the training data to the designed architecture within defined epochs and batch sizes.

4.12. Model Evaluation

Following the model's training on the selected training corpus, a thorough evaluation of its

generalizability on previously encountered data is required. This involves the use of a distinct

testing set that must be carefully maintained throughout the development process. The testing set,

which serves as a critical benchmark, reveals the model's performance in managing fresh textual

encounters. In this study, accuracy is chosen as the major performance metric. The formula for

calculating accuracy is written as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Total number of maches

Total number of words
∗ 100%

53

CHAPTER FIVE

5. EXPERIMENT RESULT AND DISCUSSION

5.1. Overview

In this chapter, we examine the experimental implementation details and provide an overview of

the outcomes achieved. The major goal of this research was to develop a model for predicting word

sequences for the Amharic language using BILSTM deep learning methods. The experimental

findings part includes, such as model training, and model testing.

5.2. Tools and Experimentation Environment

Python was the programming language utilized for both the experiment and the design solution.

Naturally, an extremely powerful language for experimenting with NLP and other fields. Because

it contains many built-in libraries and makes them easy to utilize for the user, it is simple to write.

We are used to a laptop and a server. The Dell server was utilized for the real model training,

testing, and validation, with the laptop computer being used for the remaining tasks. These are the

specifications of the computer:

 Server(Dell server)

 Windows Server 2019 Standard Edition OS

 128GB RAM extendable to 256GB

 16TB SSD Hard Disk extendable to 32TB

 Processor Intel® Xeon® 4216 Silver Scalable processors up to 28 cores per @

2.70GHz, 2694 MHz,

 Laptop(HP Pavilion Notebook)

 Windows 10 64-bit operating system

 Processor Intel(R) Core (TM) i7- 6500U CPU @ 2.50GHZ 2.59 GHZ

 Ram 8 GB RAM.

 1TB Hard disk

5.3. Dataset

A considerable amount of text data is required to build a corpus for Amharic word sequence

prediction. Unfortunately, there is no widely available corpus for Amharic. To address this issue,

we gathered information from a variety of sources, including mass media outlets (FANA,

54

WALTA, Ethiopian Press, and Alalan), Politics, social issues, sports, and entertainment were

among the themes covered in the survey. We obtained a corpus of 3,496 sentences and after

filtering the collected data, we obtained 18,086 unique words. To aid processing by the Python

tool, all files were converted to text format.

Table 5. 1 Corpus summary

Type of Data Amount

Sentence 3496

Unique Words 18,086

7-grams 76,984

Training set(70%) 57,738

Validation Set(20%) 11,548

Testing set(10%) 7,698

5.4. Experimental results

Our research explores the performance of the proposed Bi-LSTM model through a series of

meticulously designed experiments. These experiments systematically varied crucial

hyperparameters, including LSTM unit count, optimizer selection, activation functions, dropout

rates, and learning rates, during model training and testing. Furthermore, we investigated the

impact of employing Bi-LSTM architectures and utilizing different pre-trained word embedding

methods like Word2Vec, FastText, GloVe, and Keras embeddings. The efficacy of each

experiment was rigorously assessed using the aforementioned evaluation metrics. A

comprehensive table, Table 5.2 details the specific model parameters employed in each

experiment, ensuring transparency and facilitating the potential replication of our work.

 Table 5. 2 Hyperparameter Parameters

Hyperparameter Value

Batch size 32

LSTM unit 100

Learning rate 0.0001

Dropout rate 0.5

Epoch 100

Optimizer Adam, Nadam

Activation function Relu

55

5.4.1. Training with Glove Embedding

In our initial implementation, the Glove embedding technique was employed, incorporating a

predetermined set of hyperparameters that encompassed 100-dimensional vectors and a training

duration of 100 epochs. Additionally, we investigated the model's performance by considering two

different optimizers, namely Adam and Nadam, along with the utilization of the Rectified Linear

Unit (ReLU) activation function. To assess the model's efficacy, training curves were generated

and analyzed.

Figure 5. 1 Glove model accuracy and loss

Figure 5.1 illustrates the training and validation performance curves for the model. As seen, the

validation accuracy reaches a peak of only 63%, while the training accuracy reaches 63%. This

disparity between training and validation results suggests that the model is overfitting the training

data. Overfitting occurs when the model memorizes the training patterns too closely, failing to

generalize effectively to unseen data. This is further evidenced by the validation loss, which

remains relatively high at 1.63, indicating the model struggles to learn generalizable patterns from

the training data.

5.4.2. Training with Fasttext Embeddings

Following similar hyperparameters (100-dimensional vectors and 100 epochs), we trained a

subsequent model with FastText embedding. Again, we compared the effectiveness of the two

56

optimizers (Adam, and Nadam) in combination with the activation function Relu. Training curves

are provided to assess the model's learning behavior.

Figure 5. 2 Fasttext model loss and accuracy

Figure 5.2 shows the best results for the model using the fastest word embedding method. Both

the training and validation sets reached exceptional accuracy scores: 97.5% for training and 95.6%

for validation. This demonstrates that the model effectively learned from the training data and

generalized well to unseen data. Additionally, the Adam optimizer demonstrated superior

performance compared to Nadam, further contributing to the model's enhanced accuracy score.

The validation loss recorded a low value of 0.03, further confirming the model's strong

performance. These results signify that the fastest word embedding method outperformed other

the three methods in terms of accuracy, achieving the best accuracy on both training and validation

sets. The model seems to be working well based on our dataset. However, it's important to test it

on a much larger dataset. To be truly confident in its performance.

5.4.3. Training with Word2vec embedding

We then trained a model utilizing Word2vec embedding with the same standard configuration

(100-dimensional vectors and 100 epochs). As in previous models, we experimented with the

performance of two optimizers (Adam, and Nadam) paired with the activation functions of Relu,

The corresponding training curves are presented for further analysis.

57

Figure 5. 3 Word2vec model loss and accuracy

Figure 5.3 shows impressive results for the model using the Word2vec word embedding method.

Both the training and validation sets reached exceptional accuracy scores: 94.52% for training and

91.68% for validation. This demonstrates that the model effectively learned from the training data

and generalized well to unseen data. Additionally, the Adam optimizer demonstrated superior

performance compared to Nadam, further contributing to the model's enhanced accuracy score. the

validation loss recorded a low value of 0.09, further confirming the model's strong performance.

These results signify that the Word2vec word embedding method Also has better score compared

with Glove and keras embedding methods in terms of accuracy, achieving good accuracy on both

training and validation sets.

5.4.4. Training with Keras Embedding

Finally, we explored the use of Keras embedding in a model trained with similar hyperparameters

(100-dimensional vectors and 100 epochs). We evaluated the efficacy of two optimizers (Adam

and Nadam) alongside the activation functions of Relu, and Sigmoid). The training curves are

depicted for performance evaluation.

58

Figure5.4Keras embedding loss and accuracy

Figure 5.4 reveals that the Keras embedding method outperforms Glove in terms of accuracy score.

The Keras model achieved an accuracy of 83% on the training set and 81% on the validation set,

while Glove yielded 68% and 63%, respectively. This suggests that the Keras model learned more

effectively from the training data and generalized better to unseen data. Additionally, the Adam

optimizer demonstrated superior performance compared to Nadam, further contributing to the

model's enhanced accuracy score. However, it's important to acknowledge that the model's

performance still falls short of the best results achieved with other embedding methods, FastText

and Word2vec. Finally, the validation loss of 0.31 indicates ineffective learning, although further

optimization might be necessary for optimal performance.

Table 5.12. Summary of Word Embedding Models Comparison Results

Embedding

Model

Epoch Optimize Accuracy Loss

Training Validation Training Validation

Glove

100 Adam 0.68 0.63 1.63 1.63

Nadam 0.58 0.53 1.61 1.64

Fasttext
100 Adam 0.97 0.95 0.03 0.03

Nadam 0.91 0.89 0.08 0.09

Word2vec
100 Adam 0.94 0.91 0.08 0.09

Nadam 0.86 0.87 0.16 0.18

Karase

Embedding

100 Adam 0.83 0.81 0.28 0.31

Nadam 0.79 0.78 0.34 0.33

59

5.6 Discussion

In the preceding section, our findings, as depicted in Table 5.12, demonstrate that various pre-

trained word embedding techniques can have an impact on the performance of deep learning

models. Our experimentation revealed that the Fasttext with BiLSTM deep learning model

exhibited superior accuracy in word prediction compared to the three other pre-trained models.

Moreover, we noted that the utilization of Fasttext pre-trained word embedding techniques

influenced the accuracy of the model in predicting word sequences in the Amharic language.

Following Fasttext, word2vec also yielded favorable outcomes in comparison to Glove and Keras

embedding.

In the context of this study, we employed Fasttext trained with BiLSTM deep learning, employing

set hyperparameter values. The trained model achieved an accuracy score of 97.5%. Our

experimentation revealed that the Fasttext word embedding method demonstrated enhanced

performance in fitting the stance word prediction model using BiLSTM, with a training accuracy

of 97.5% and a validation accuracy of 95.6%. Based on our investigations, it can be asserted that

for Amharic word sequence prediction, the Fasttext embedding model produces the most favorable

outcomes when compared to alternative pre-trained models

60

CHAPTER SIX

6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This research aimed to create a word sequence prediction model for the Amharic language using

deep learning techniques. The fundamental goal of word prediction systems is to provide choices

for the most likely next word based on contextual information, hence saving time and effort when

writing. To achieve this goal, preprocessed data from a corpus including 18,085 unique words and

76,984 word sequences was gathered and split into training, testing, and validation sets.

The suggested model was evaluated by training four pre-trained word embedding methods:

Word2vec, Fasttext, Glove, and Keras, using Bidirectional Long-Short Memory (Bi-LSTM)

algorithms, a popular deep learning methodology. The training process for each embedding

method was improved by using two optimization approaches, Adam and Nadam, in combination

with a set of hyperparameters.

The study was intended to develop an effective model for predicting Amharic word sequences

using the Bi-LSTM deep learning approach, with a focus on properly forecasting the next word.

Among all the examined word embedding and optimization techniques, the combination of the

Fasttext method and the Adam optimizer methodology with a batch size of 32 produced the highest

training accuracy of 97.5% and validation accuracy of 95.6%. These findings suggest that bi-

LSTM-based models, when combined with appropriate hyperparameters and embedding

approaches, have considerable potential for improving text prediction systems in Amharic.

The findings of this study are expected to have significant implications for the development of

word sequence prediction systems for the under-resourced Amharic language, as well as for future

work in the field of Amharic language modeling.

6.2. Future work

To improve the effectiveness of the Amharic word sequence prediction model, numerous options

for future study can be pursued. This includes:

61

 Incorporating additional NLP modules: Integrating modules for tasks like morphological

analysis, part-of-speech tagging, and named entity recognition could provide a richer

context for the model and improve its predictions.

 Exploring alternative sequence learning models: Investigating other recurrent neural

networks, such as gated recurrent units (GRUs), or even transformer-based architectures

could potentially lead to better performance.

 Utilizing larger and more diverse datasets: Training the model on a larger and more diverse

corpus of Amharic text could improve its generalizability and adaptability to different

writing styles and domains.

 Examining domain-specific adaptations: Investigating ways to tailor the model for specific

domains, such as news articles, legal documents, or social media, could further enhance its

accuracy within those contexts.

 Explore the impact of alternative word embedding methods, and further optimize

hyperparameter settings beyond those investigated in this study.

 Future studies could investigate how well deep neural network compression methods such

as weight tying and matrix factorization can decrease the computational demands and

memory usage of the Amharic language task.

62

 References

[1] I. . Z. "Natural Language Processing of Semitic Languages," Springer, Heidelberg, Berlin, 2014.

[2] T. T. Tessema, "Word Sequence Prediction for Amharic Language," Theses Addis Ababa University,

2014.

[3] A. M. M. and V. G. , "Amharic Text Predict System for Mobile Phone," International Journal of

Computer Science Trends and Technology , 2015.

[4] D. E. G. H. and W. T. , "Bi-directional long short term memory-gated recurrent unit model for

Amharic next word prediction," PLOS ONE, 2022.

[5] A. P. "Augmentative and Alternative Communication systems for the moto disabled," National and

Kapodistrian University of Athens, 2014.

[6] M. G. and E. D. , "A POS-Based Word Prediction System for the Persian Language," Iran National

Science Foundation, 2008.

[7] D. A. P. M. M. M. P. H. W. H. S. and H. M. , "The Effects of Word Completion and Word Prediction

on Typing Rates Using On-Screen Keyboards," The National Center for Biotechnology Information,

2015.

[8] Y. M. a. W. C. W. and T. Q. , "Design of Word Input Prediction System Based on LSTM,,"

International Journal of Scientific Research and Innovative Technology, 2021.

[9] J. M. M. B. and H. T. , "FASTY A multi-lingual approach to text prediction‖," n Computers Helping

People with Special Needs, pp. pp. 243- 250, 2002..

[10] S. A. and S. A. , "Context based word prediction for texting language," RIAO '07: Large Scale

Semantic Access to Content (Text, Image, Video, and Sound), p. Pages 360–368, 2007.

[11] C. A. N. C. N. D. P. M. and M. R. , "Advances in NLP applied to Word Prediction," Department of

Computer Science – University of Pisa, Italy, 2008.

[12] S. K. BERHE , "Word Sequence Prediction Model for Tigrigna Language," Theses Addis Ababa

University , 2020.

[13] J. v. B. A. H. and A. M. , "Introduction to Design Science Research," researchgate, 2020.

[14] J. and J. , "A Survey of Text Generation Techniques," Journal of Artificial Intelligence, 2020.

[15] S. C. D. B. and R. R. , "Evaluation Metrics For Language Models," Researchgate, 2001.

63

[16] M. G. and S. M. , "An overview on the existing language models for prediction systems as writing

assistant tools," Man and Cybernetics,IEEE International Conference, pp. pp. 5083 -5087, 2009.

[17] M. Q. and V. M. , "A Survey on Language Models," Lakehead University, Canada, 2020.

[18] E. . G. and E. P. , "A Swedish Grammar for Word Prediction," Language Engineering

Programme,Uppsala universty, 2003.

[19] R. H. . r. B. and R. L. , "Word Frequency Distributions and Lexical Semantics," Computers and the

Humanities, Kluwer Academic Publishers, 1997.

[20] H. S. S. S. J. B. E. C. and S. V. , "Recent Advances in Recurrent Neural Networks," Computer Science

Neural and Evolutionary Computing arXiv, 2018.

[21] . Y. . T. Tessema, "NEXT WORD PREDICTION FOR AMHARIC LANGUAGE USING BI-LSTM," M.Sc.

Thesis HAWASSA UNIVERSITY, 2023.

[22] A. F. R. and E. V. M. , "Automation of the process of selecting hyperparameters for artificial neural

networks for processing retrospective text information," OP Conference Series: Earth and

Environmental Science, 2020.

[23] N. S. and S. A. , "Word Prediction for Amharic Online Handwriting Recognition," Master‘s Thesis,

Addis Ababa University, 2008.

[24] T. M. I. S. K. C. G. C. and J. D. , "Distributed representations of words and phrases from massive

text corpora," Conference on Neural Information, pp. pp. 212-223, 2013.

[25] A. R. S. W. and A. D. A. F. B. H. , "Next word prediction using LSTM," Information Technology and IT

Uitilization, vol. v0lum 1, 2022.

[26] A. M. P. A. and S. S. , "Deep Learning Techniques: An Overview," Avinashilingam Institute for Home

Science and Higher Education for Women, 2021.

[27] L. A. J. Z. A. J. H. A. A. Y. D. O. A. J. S. M. A. F. M. A. M. A. and L. F. , "Review of deep learning:

concepts, CNN architectures, challenges, applications, future directions," J Big Data, 2021.

[28] Y. B. P. S. and P. F. , "Learning Long-Term Dependencies with Gradient Descent is Diffcult," in IEEE

Transactions on Neural Networks, 1994.

[29] S. S.-N. N. T. and A. S. N. , "A Comparative Analysis of Forecasting Financial Time Series Using

ARIMA, LSTM, and BiLSTM," arXiv:1911.09512v1 [cs.LG] , 2019.

[30] A. F. G. and F. K. , "Predicting next Word using RNN and LSTM cells: Stastical Language Modeling,"

2019 Fifth International Conference on Image Information Processing , no. Aejaz Farooq Ganai;

64

Farida Khursheed “Predicting next Word using RNN and LSTM cells: Stastical Language Modeling”

2(ICIIP), 2019., 2019.

[31] A. R. . K. N. T. X. . E. J. . I. S. and . Y. T. , "Learning transferable language models from massive

datasets," In International Conference on Machine Learning, no. Radford, A., Narayanan, K., Xu, T.,

Janosik, E., Sutskever, I., & Tay, Y. (2018, May). Learning transferable language , pp. pp. 4783-4801,

2018.

[32] R. S. N. G. N. A. P. K. and C. . P. , "Next Word Prediction in Hindi Using Deep Learning Techniques,,"

Fifth international Conference on Data Science and Engineering, 2019.

[33] L. W. M. F. B. . Z. B. X. and S. M. , "Efficient Hyper-parameter Optimization for NLP Applications,"

IBM Watson, T. J. Watson Research Center, NY, 2015.

[34] Q. J. and . S. . Z. , "A Brief Survey of Word Embedding and Its Recent Development," IEEE 5th

Advanced Information Technology, 2021.

[35] N. R. and I. G. , "Optimal Hyperparameters for Deep LSTM-Networks for Sequence labeling task,"

Ubiquitous Knowledge Processing Lab (UKP-DIPF) German Institute for Educational Research, 2017.

[36] P. G. and M. J. , "Better Static Word Embeddings Using Contextual Embedding Models,"

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing, 2021.

[37] C. W. P. N. and D. L. , "A Comparative Study on Word Embeddings in Deep Learning for Text

Classification," Proceedings of the 4th International Conference on Natural Language Processing

and Information Retrieval,, pp. PP 37-46, 2020.

[38] A. E. G. T. and T. . A. , "Learning Word and Sub-word Vectors for Amharic (Less Resourced

Language)," International Journal of Advanced Engineering Research and Science (IJAERS) , Vols.

Vol-7, no. Issue-8, Aug- 2020].

[39] M. E. P. M. N. M. I. M. G. C. C. K. L. and L. . Z. , "Deep contextualized word representations," in

arXiv preprint arXiv:1802.05365., 2018.

[40] D. P. K. and J. B. , "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION," in International

Conference on Learning Representations (ICLR), 2015.

[41] S. S. A. B. and A. S. , "Comparison of Hyper-Parameter Optimization Methods for Deep Neural

Networks," j.inst.Korean.electr.electron.eng, 2020.

[42] W. M. "Designing Geez Next word prediction Model using statistical," Theses Bahir Dar University ,

2020.

65

[43] A. B. Delbeto, "Word Sequence Prediction for Afaan Oromo,," Theses Addis Ababa University,

2018.

[44] C. A. N. C. and P. M. , "An Inflected-Sensitive Letter and Word Prediction System," International

Journal of Computing & Information Sciences, vol. Vol. 5, 2007.

[45] P. P. B. and A. B. , "A RNN based Approach for next word prediction in Assamese Phonetic

Transcription," Dept ofCSE, DUIET, Dibrugarh University, Dibrugarh-786004, Assam, India, 2018.

[46] D. S. R. ,. V. R. N. Dr. D. Usha, K. R. B. S. and S. P. R. , "EXO NEXT WORD PRERDICTION using

Machine Learning," jornal of Survay fisher science, 2023.

[47] O. F. S. . A. M. A. A. K. and K. M. H. , "Bangla Word Prediction and Sentence Completion Using GRU:

An Extended Version of RNN on N-gram Language Model," 2019 International Conference on

Sustainable Technologie, 2019.

[48] N. K. Abebe, "WORD SEQUENCE PREDICTION FOR AMHARIC," Ms.Theses, Addis Ababa University,

2011.

[49] B. M. Hailu , "SEMANTIC ROLE LABELING FOR AMHARIC TEXT USING DEEP LEARNING," Theses

Addis Ababa University,, 2021.

[50] A. A. Argaw and L. A. , "An Amharic stemmer: Reducing words to their citation forms.,"

Proceedings of the 2007 workshop on computational approaches to Semitic languages: Common

issues and resources, Association for Computational Linguistics., 2007.

[51] G. M. Misganew, "SEMANTIC-AWARE AMHARIC TEXT CLASSIFICATION USING DEEP LEARNING

APPROACH," Thesis Addis Ababa University, 2020.

[52] R. C. S. and E. R. M. , "Understanding LSTM a tutorial into Long Short-Term Memory Recurrent

Neural Networks," arXiv.org, 2019.

[53] U. K. A. H. M. U. A. W. S. and M. O. B. , "Co-occurrences using Fasttext embeddings for word

similarity tasks in Urdu," arXiv:2102.10957v1, 2021.

[54] N. B. F. K. and A. H. C. , "Combining FastText and Glove Word Embedding for Offensive and Hate

speech Text Detection," 26th International Conference on Knowledge-Based and Intelligent

Information & Engineering Systems, 2022.

[55] B. M. Hailu, Y. A. and Y. B. Sinshaw, "Semantic Role Labeling for Amharic Text Using Multiple

Embeddings and Deep Neural Network," Department of Computer Science, Addis Ababa University,

2023..

66

[56] S. R. S. K. and B. B. , "Activation Functions in Deep Learning: A Comprehensive Survey and

Benchmark," Computer Vision and Biometrics Laboratory, Indian Institute of Information

Technology, Allahabad, Indi, 2022.

[57] A. L. and F. S. F. , "A Survey of Optimization Techniques for Deep," International Journal for

Research in Engi neering Application & Management, 2019.

[58] T. Y. J. M. and Y. A. , "Morphologically Annotated Amharic Text Corpora," The 44th International

ACM SIGIR Conference on Research and Development in Information Retrieval, pp. pp.2349-2355,

2021.

[59] R. S. A. P. J. W. J. C. C. D. . A. N. and C. . P. , "Recursive deep models for semantic compositionality

over a sentiment treebank.," the 2013 conference on empirical methods in NLP, pp. PP 1631-1642,

2021.

[60] L. A. J. Z. A. . J. H. . A. A. D. Y. D. O. A. S. J. S. M. A. F. M. A. A. and L. F. , "Review of deep learning:

concepts, CNN architectures, challenges, applications," Journal of Big Data, 2021.

[61] C. Abhimanyu , P. Abhinav and S. Chandresh , "Natural Language Processing," International Journal

of Technology Enhancements and Emerging Engineering Reserch, vol. Vol 1, no. Issue 4 131 Issn,

pp. 2347-4289, 2013.

[62] D. Z. and D. . W. , "Relation Classification via Recurrent Neural Network," Tsinghua National Lab for

Information Science and Technology, 2015.

67

68

Appendices

Amharic Character

69

 Short form Expansion

70

Normalize Geez and Arabic Number MIs-match

71

Text Cleaning

Word Tokenizer

72

 Frequent word sequence extraction

Set Sequence length

73

Output of Seven-gram sequence of Amharic words

 Output of seven gram sequence

Sequence padding

 Splitting the data in to training, validation and test

 Load the pre-trained FastText model

74

Model Building

 Set the weights of the Embedding layer to the Fasttext embedding matrix

 Training

75

The Last 10 epoch Training with Fasttest word embedding

 Fasttext loss and accuracy Graph

The Last 10 epoch Training With Word2vec word embedding

76

Word2vec loss and accuracy Graph

The Last 10 epoch Training with Keras word embedding

 Keras loss and accuracy Graph

77

The Last 10 epoch Training with Glove word embedding

 Glove loss and accuracy Graph

78

Word Prediction

